S. Geras'kin, R. Churyukin, P. Volkova, S. Bitarishvili
{"title":"Using ionizing radiation for improving the development and yield of agricultural crops.","authors":"S. Geras'kin, R. Churyukin, P. Volkova, S. Bitarishvili","doi":"10.1079/9781789249095.0043","DOIUrl":null,"url":null,"abstract":"Abstract\n The response of barley seedlings was studied after gamma irradiation of seeds with doses in the range of 2-50 Gy. It was shown that stimulation of plant growth occurred in the dose range of 16-20 Gy. The influences of the dose rate, the quality of seeds and their moisture on the manifestation of radiation effects were investigated. We studied, under controlled conditions, the activities of metabolic and antioxidant enzymes and observed an increase in their activity in the range of doses that cause stimulation of seedling growth. We showed that changes in the balance among different classes of phytohormones were probably involved in the acceleration of plant growth after irradiation of seeds using stimulating doses. Gamma irradiation of barley seeds significantly influenced the development of plants during the growing season. After irradiation with stimulating doses, we observed a reduction in the duration of the initial stages of ontogenesis; the phase of full ripeness occurred 5-7 days earlier than in the controls. The manifestation of the effect of irradiation depended on the conditions in which the plants developed. During the growing season of 2014, which was a dry year, plants originating from the irradiated seeds showed an increase in the number of productive stems, which led to an increase in yield by 34-38%; during the optimal 2015 season, an increase in the number of grains per spike caused an increase in yield by 8-29%. Therefore, our field study has shown that at least some hormetic effects can occur in the field. Irradiation of seeds can increase field germination, stimulate the growth and development of plants and increase their resistance to unfavourable environmental conditions. A more complete understanding of the underlying mechanisms of hormesis is needed to exploit its potential benefits in crop production.","PeriodicalId":287197,"journal":{"name":"Mutation breeding, genetic diversity and crop adaptation to climate change","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutation breeding, genetic diversity and crop adaptation to climate change","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1079/9781789249095.0043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract
The response of barley seedlings was studied after gamma irradiation of seeds with doses in the range of 2-50 Gy. It was shown that stimulation of plant growth occurred in the dose range of 16-20 Gy. The influences of the dose rate, the quality of seeds and their moisture on the manifestation of radiation effects were investigated. We studied, under controlled conditions, the activities of metabolic and antioxidant enzymes and observed an increase in their activity in the range of doses that cause stimulation of seedling growth. We showed that changes in the balance among different classes of phytohormones were probably involved in the acceleration of plant growth after irradiation of seeds using stimulating doses. Gamma irradiation of barley seeds significantly influenced the development of plants during the growing season. After irradiation with stimulating doses, we observed a reduction in the duration of the initial stages of ontogenesis; the phase of full ripeness occurred 5-7 days earlier than in the controls. The manifestation of the effect of irradiation depended on the conditions in which the plants developed. During the growing season of 2014, which was a dry year, plants originating from the irradiated seeds showed an increase in the number of productive stems, which led to an increase in yield by 34-38%; during the optimal 2015 season, an increase in the number of grains per spike caused an increase in yield by 8-29%. Therefore, our field study has shown that at least some hormetic effects can occur in the field. Irradiation of seeds can increase field germination, stimulate the growth and development of plants and increase their resistance to unfavourable environmental conditions. A more complete understanding of the underlying mechanisms of hormesis is needed to exploit its potential benefits in crop production.