The Implementation of Hybrid Semantic Ontology-based Model on Movie Recommendation System

Noor Ifada, Evi Cahyaningrum, Fika Hastarita Rachman
{"title":"The Implementation of Hybrid Semantic Ontology-based Model on Movie Recommendation System","authors":"Noor Ifada, Evi Cahyaningrum, Fika Hastarita Rachman","doi":"10.1109/CENIM56801.2022.10037277","DOIUrl":null,"url":null,"abstract":"This paper adopts the Hybrid Semantic Ontology-based (HSO) model for a movie recommendation system. HSO consists of Collaborative Filtering (CF) and Content-based (CB) modules that respectively implement Matrix Factorization (MF) and ONTO Semantic Similarity algorithms. Since the feedback data type influences the MF algorithm choice, we individually implement the Non-Negative Matrix Factorization (NMF) and Singular Value Decomposition (SVD) algorithms for handling the movie rating data. Accordingly, our proposed methods are called HSO-NMF and HSO-SVD. Meanwhile, since the domain determines the ontology, we build and use a new movie ontology on the CB module. The experiments show that HSO performs the best when implemented using the SVD algorithm. On average, the increased percentages of HSO-SVD to HSO-NMF are 1.18% and 1.62% in Precision and NDCG metrics, respectively. The experiments also show that implementing the Hybrid model yields more accurate results than the CB or CF model.","PeriodicalId":118934,"journal":{"name":"2022 International Conference on Computer Engineering, Network, and Intelligent Multimedia (CENIM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Computer Engineering, Network, and Intelligent Multimedia (CENIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CENIM56801.2022.10037277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper adopts the Hybrid Semantic Ontology-based (HSO) model for a movie recommendation system. HSO consists of Collaborative Filtering (CF) and Content-based (CB) modules that respectively implement Matrix Factorization (MF) and ONTO Semantic Similarity algorithms. Since the feedback data type influences the MF algorithm choice, we individually implement the Non-Negative Matrix Factorization (NMF) and Singular Value Decomposition (SVD) algorithms for handling the movie rating data. Accordingly, our proposed methods are called HSO-NMF and HSO-SVD. Meanwhile, since the domain determines the ontology, we build and use a new movie ontology on the CB module. The experiments show that HSO performs the best when implemented using the SVD algorithm. On average, the increased percentages of HSO-SVD to HSO-NMF are 1.18% and 1.62% in Precision and NDCG metrics, respectively. The experiments also show that implementing the Hybrid model yields more accurate results than the CB or CF model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于混合语义本体模型在电影推荐系统中的实现
本文采用基于混合语义本体(HSO)的电影推荐系统模型。HSO由协同过滤(CF)和基于内容的(CB)模块组成,分别实现矩阵分解(MF)和ONTO语义相似算法。由于反馈数据类型影响MF算法的选择,我们分别实现了非负矩阵分解(NMF)和奇异值分解(SVD)算法来处理电影评级数据。因此,我们提出的方法被称为HSO-NMF和HSO-SVD。同时,由于领域决定了本体,我们在CB模块上构建并使用了一个新的电影本体。实验结果表明,采用SVD算法实现HSO效果最好。在Precision和NDCG指标中,HSO-SVD对HSO-NMF的平均增加百分比分别为1.18%和1.62%。实验还表明,实现混合模型比CB或CF模型得到更精确的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of Mechanism to Create Dialysate Liquid in Hemodialysis Machine Modification of CPW Antenna Using Various Slot Shapes for Wireless Communication System Mobile Device Facial Beauty Prediction using Convolutional Neural Network as Makeup Reference Social Farming Development to Improve Farming Desire and Profit: A System Thinking Approach Medical Information System As Supporting Tele-Rehabilitation of Post Stroke Patients Using Website - Based Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1