Crime Prediction Using Hotel Reviews?

Panos Kostakos, Somkiadcharoen Robroo, Bofan Lin, M. Oussalah
{"title":"Crime Prediction Using Hotel Reviews?","authors":"Panos Kostakos, Somkiadcharoen Robroo, Bofan Lin, M. Oussalah","doi":"10.1109/EISIC49498.2019.9108861","DOIUrl":null,"url":null,"abstract":"Can hotel reviews be used as a proxy for predicting crime hotspots? Domain knowledge indicates that hotels are crime attractors, and therefore, hotel guests might be reliable “human crime sensors”. In order to assess this heuristic, we propose a novel method by mapping actual crime events into hotel reviews from London, using spatial clustering and sentiment feedback. Preliminary findings indicate that sentiment scores from hotel reviews are inversely correlated with crime intensity. Hotels with positive reviews are more likely to be adjacent to crime hotspots, and vice versa. One possible explanation for this counterintuitive finding that the review data are not mapped against specific crime types, and thus the crime data capture mostly police visibility on the site. More research and domain knowledge are needed to establish the strength of hotel reviews as a proxy for crime prediction.","PeriodicalId":117256,"journal":{"name":"2019 European Intelligence and Security Informatics Conference (EISIC)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 European Intelligence and Security Informatics Conference (EISIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EISIC49498.2019.9108861","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Can hotel reviews be used as a proxy for predicting crime hotspots? Domain knowledge indicates that hotels are crime attractors, and therefore, hotel guests might be reliable “human crime sensors”. In order to assess this heuristic, we propose a novel method by mapping actual crime events into hotel reviews from London, using spatial clustering and sentiment feedback. Preliminary findings indicate that sentiment scores from hotel reviews are inversely correlated with crime intensity. Hotels with positive reviews are more likely to be adjacent to crime hotspots, and vice versa. One possible explanation for this counterintuitive finding that the review data are not mapped against specific crime types, and thus the crime data capture mostly police visibility on the site. More research and domain knowledge are needed to establish the strength of hotel reviews as a proxy for crime prediction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用酒店评论预测犯罪?
酒店评论可以作为预测犯罪热点的代理吗?领域知识表明,酒店是犯罪的吸引者,因此,酒店客人可能是可靠的“人类犯罪传感器”。为了评估这种启发式,我们提出了一种新颖的方法,即使用空间聚类和情感反馈将实际犯罪事件映射到伦敦的酒店评论中。初步发现表明,酒店评论的情绪得分与犯罪强度呈负相关。拥有正面评价的酒店更有可能靠近犯罪热点,反之亦然。对于这一违反直觉的发现,一种可能的解释是,评论数据没有映射到特定的犯罪类型,因此犯罪数据主要捕获了网站上警察的可见性。需要更多的研究和领域知识来建立酒店评论作为犯罪预测代理的力量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Extracting Account Attributes for Analyzing Influence on Twitter Evaluation of Deep Learning Models for Ear Recognition Against Image Distortions Devising and Optimizing Crowd Control Strategies Using Agent-Based Modeling and Simulation Attack Hypothesis Generation Identifying Deceptive Reviews: Feature Exploration, Model Transferability and Classification Attack
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1