GeoBD2: Geospatial Big Data Deduplication Scheme in Fog Assisted Cloud Computing Environment

Rabindra Kumar Barik, S. Patra, Rasmita Patro, S. Mohanty, A. A. Hamad
{"title":"GeoBD2: Geospatial Big Data Deduplication Scheme in Fog Assisted Cloud Computing Environment","authors":"Rabindra Kumar Barik, S. Patra, Rasmita Patro, S. Mohanty, A. A. Hamad","doi":"10.1109/INDIACom51348.2021.00008","DOIUrl":null,"url":null,"abstract":"With the speedy expansion of Internet of Spatial Things, the enormous volume of geospatial big data is produced by the IoT devices. It gives rise to the new challenges for real time geospatial data processing and storing of reliable data in cloud system. The traditional geospatial cloud computing system is not efficient enough to process large volumetric of concurrent geospatial data. Consequently, fog assisted cloud computing environment has come into picture for achieving secure geospatial big data deduplication scheme. In this paper, we introduce a novel scheme GeoBD2 which defines the geo-deduplication structure to build an efficient geospatial bigdata deduplication scheme on fog assisted cloud computing framework. It also regulates which fog node needs to be traversed to investigate duplicate geospatial data rather than to traverse all the fog nodes. This can substantially enhance the efficiency of geospatial big data deduplication in fog assisted cloud environment. It also executes the performance analysis of the proposed scheme. By the experimental results, it is found that the proposed scheme has minimum overhead cost than the existing big data deduplication scheme.","PeriodicalId":415594,"journal":{"name":"2021 8th International Conference on Computing for Sustainable Global Development (INDIACom)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 8th International Conference on Computing for Sustainable Global Development (INDIACom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIACom51348.2021.00008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

With the speedy expansion of Internet of Spatial Things, the enormous volume of geospatial big data is produced by the IoT devices. It gives rise to the new challenges for real time geospatial data processing and storing of reliable data in cloud system. The traditional geospatial cloud computing system is not efficient enough to process large volumetric of concurrent geospatial data. Consequently, fog assisted cloud computing environment has come into picture for achieving secure geospatial big data deduplication scheme. In this paper, we introduce a novel scheme GeoBD2 which defines the geo-deduplication structure to build an efficient geospatial bigdata deduplication scheme on fog assisted cloud computing framework. It also regulates which fog node needs to be traversed to investigate duplicate geospatial data rather than to traverse all the fog nodes. This can substantially enhance the efficiency of geospatial big data deduplication in fog assisted cloud environment. It also executes the performance analysis of the proposed scheme. By the experimental results, it is found that the proposed scheme has minimum overhead cost than the existing big data deduplication scheme.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GeoBD2:雾辅助云计算环境下地理空间大数据重复数据删除方案
随着空间物联网的快速发展,物联网设备产生了海量的地理空间大数据。这对云系统中地理空间数据的实时处理和可靠数据的存储提出了新的挑战。传统的地理空间云计算系统处理大容量的并发地理空间数据的效率不高。因此,为了实现安全的地理空间大数据重复数据删除方案,雾辅助云计算环境应运而生。本文提出了一种新的方案GeoBD2,该方案定义了地理重复数据删除结构,在雾辅助云计算框架下构建了一种高效的地理空间大数据重复数据删除方案。它还规定需要遍历哪些雾节点来调查重复的地理空间数据,而不是遍历所有雾节点。这可以大大提高雾辅助云环境下地理空间大数据重复数据删除的效率。并对所提出的方案进行了性能分析。实验结果表明,与现有的大数据重复数据删除方案相比,该方案具有最小的开销成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stochastic Scheduling of Parking Lot Operator in Energy and Regulation Markets amalgamating PBDR Social Synchrony: An Analytical Contemplation of Contemporary State of Art Frameworks The AI enabled Chatbot Framework for Intelligent Citizen-Government Interaction for Delivery of Services Biometric System - Challenges and Future Trends Solving SIS Epidemic Disease Model by Flower Pollination Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1