Cluster-space classification: a fast k-nearest neighbour classification for remote sensing hyperspectral data

X. Jia, J. Richards
{"title":"Cluster-space classification: a fast k-nearest neighbour classification for remote sensing hyperspectral data","authors":"X. Jia, J. Richards","doi":"10.1109/WARSD.2003.1295222","DOIUrl":null,"url":null,"abstract":"In this paper a fast k-nearest neighbour (k-NN) algorithm is presented which combines k-NN with a cluster-space data representation. Implementation of the algorithm is easier and classification time can be significantly reduced. Results from tests carried out with a Hyperion data set demonstrate that the simplification has little effect on classification performance and yet efficiency is greatly improved.","PeriodicalId":395735,"journal":{"name":"IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data, 2003","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data, 2003","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WARSD.2003.1295222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In this paper a fast k-nearest neighbour (k-NN) algorithm is presented which combines k-NN with a cluster-space data representation. Implementation of the algorithm is easier and classification time can be significantly reduced. Results from tests carried out with a Hyperion data set demonstrate that the simplification has little effect on classification performance and yet efficiency is greatly improved.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
聚类空间分类:用于遥感高光谱数据的快速k近邻分类
本文提出了一种快速的k-近邻(k-NN)算法,该算法将k-NN与聚类空间数据表示相结合。该算法实现简单,可显著减少分类时间。使用Hyperion数据集进行的测试结果表明,简化对分类性能的影响很小,但效率大大提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A residual-based approach to classification of remote sensing images Operational segmentation and classification of SAR sea ice imagery The spectral similarity scale and its application to the classification of hyperspectral remote sensing data Further results on AMM for endmember induction Spatial/Spectral analysis of hyperspectral image data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1