Utilizing Weak Supervision to Create S3D: A Sarcasm Annotated Dataset

Jordan Painter, H. Treharne, Diptesh Kanojia
{"title":"Utilizing Weak Supervision to Create S3D: A Sarcasm Annotated Dataset","authors":"Jordan Painter, H. Treharne, Diptesh Kanojia","doi":"10.18653/v1/2022.nlpcss-1.22","DOIUrl":null,"url":null,"abstract":"Sarcasm is prevalent in all corners of social media, posing many challenges within Natural Language Processing (NLP), particularly for sentiment analysis. Sarcasm detection remains a largely unsolved problem in many NLP tasks due to its contradictory and typically derogatory nature as a figurative language construct. With recent strides in NLP, many pre-trained language models exist that have been trained on data from specific social media platforms, i.e., Twitter. In this paper, we evaluate the efficacy of multiple sarcasm detection datasets using machine and deep learning models. We create two new datasets - a manually annotated gold standard Sarcasm Annotated Dataset (SAD) and a Silver-Standard Sarcasm-annotated Dataset (S3D). Using a combination of existing sarcasm datasets with SAD, we train a sarcasm detection model over a social-media domain pre-trained language model, BERTweet, which yields an F1-score of 78.29%. Using an Ensemble model with an underlying majority technique, we further label S3D to produce a weakly supervised dataset containing over $100,000$ tweets. We publicly release all the code, our manually annotated and weakly supervised datasets, and fine-tuned models for further research.","PeriodicalId":438120,"journal":{"name":"Proceedings of the Fifth Workshop on Natural Language Processing and Computational Social Science (NLP+CSS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fifth Workshop on Natural Language Processing and Computational Social Science (NLP+CSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.nlpcss-1.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Sarcasm is prevalent in all corners of social media, posing many challenges within Natural Language Processing (NLP), particularly for sentiment analysis. Sarcasm detection remains a largely unsolved problem in many NLP tasks due to its contradictory and typically derogatory nature as a figurative language construct. With recent strides in NLP, many pre-trained language models exist that have been trained on data from specific social media platforms, i.e., Twitter. In this paper, we evaluate the efficacy of multiple sarcasm detection datasets using machine and deep learning models. We create two new datasets - a manually annotated gold standard Sarcasm Annotated Dataset (SAD) and a Silver-Standard Sarcasm-annotated Dataset (S3D). Using a combination of existing sarcasm datasets with SAD, we train a sarcasm detection model over a social-media domain pre-trained language model, BERTweet, which yields an F1-score of 78.29%. Using an Ensemble model with an underlying majority technique, we further label S3D to produce a weakly supervised dataset containing over $100,000$ tweets. We publicly release all the code, our manually annotated and weakly supervised datasets, and fine-tuned models for further research.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用弱监督创建S3D:一个讽刺注释数据集
讽刺在社交媒体的各个角落都很普遍,这给自然语言处理(NLP)带来了许多挑战,尤其是在情感分析方面。反讽作为一种比喻性的语言结构,具有矛盾性和典型的贬义性质,因此在许多NLP任务中,反讽检测仍然是一个很大程度上未解决的问题。随着NLP最近的进步,许多预先训练的语言模型已经在特定的社交媒体平台(如Twitter)上进行了训练。在本文中,我们使用机器和深度学习模型评估了多个讽刺检测数据集的有效性。我们创建了两个新的数据集-一个手动注释的金标准讽刺注释数据集(SAD)和一个银标准讽刺注释数据集(S3D)。结合现有的讽刺数据集和SAD,我们在社交媒体领域预训练的语言模型BERTweet上训练了一个讽刺检测模型,其f1得分为78.29%。使用具有底层多数技术的集成模型,我们进一步标记S3D以生成包含超过100,000条tweet的弱监督数据集。我们公开发布了所有的代码,我们手工注释和弱监督的数据集,以及为进一步研究微调的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
OLALA: Object-Level Active Learning for Efficient Document Layout Annotation Conspiracy Narratives in the Protest Movement Against COVID-19 Restrictions in Germany. A Long-term Content Analysis of Telegram Chat Groups. An Analysis of Acknowledgments in NLP Conference Proceedings Detecting Dissonant Stance in Social Media: The Role of Topic Exposure To Prefer or to Choose? Generating Agency and Power Counterfactuals Jointly for Gender Bias Mitigation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1