L. Pantoja, A. Salcedo, F. Blanco, E. Román-Rangel
{"title":"Optical fiber analogy for galactic under extremely low frequency classical electromagnetic wave trapping analysis","authors":"L. Pantoja, A. Salcedo, F. Blanco, E. Román-Rangel","doi":"10.1109/ICMEAE.2019.00024","DOIUrl":null,"url":null,"abstract":"Ongoing research aims at finding clues that reveal the existence of Under Extremely Low Frequency (UELF) classical electromagnetic waves. Considering their extreme wavelengths, ranging from the actual size of Jupiter up to millions of light years, UELF waves cannot fit within Earth, so the search for them needs to look after much larger regions in space. If UELF waves could interact with cosmic structures (like a galaxy or a planetary system), which dimensions scale with the corresponding wavelengths, then observable geometric patterns should be created and their existence revealed. This paper analyses the feasible trapping of UELF electromagnetic waves within cosmic structures with a disk geometry that has an approximately circular sharp edge. By making a direct analogy with an optical fiber slice, we find characteristic time periods in the order of tens of thousands of years for spiral galaxies like the Milky Way, and in the order of several hours for a solar systems like ours. Actual geometric patterns, like the planetary magnetic field alignment and the recently published 3D Milky Way mapping, support and encourage our research. While our search for clues supporting the existence of UELF waves continues, the present working paper provides novel elements of analysis to advance with it.","PeriodicalId":422872,"journal":{"name":"2019 International Conference on Mechatronics, Electronics and Automotive Engineering (ICMEAE)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Mechatronics, Electronics and Automotive Engineering (ICMEAE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMEAE.2019.00024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Ongoing research aims at finding clues that reveal the existence of Under Extremely Low Frequency (UELF) classical electromagnetic waves. Considering their extreme wavelengths, ranging from the actual size of Jupiter up to millions of light years, UELF waves cannot fit within Earth, so the search for them needs to look after much larger regions in space. If UELF waves could interact with cosmic structures (like a galaxy or a planetary system), which dimensions scale with the corresponding wavelengths, then observable geometric patterns should be created and their existence revealed. This paper analyses the feasible trapping of UELF electromagnetic waves within cosmic structures with a disk geometry that has an approximately circular sharp edge. By making a direct analogy with an optical fiber slice, we find characteristic time periods in the order of tens of thousands of years for spiral galaxies like the Milky Way, and in the order of several hours for a solar systems like ours. Actual geometric patterns, like the planetary magnetic field alignment and the recently published 3D Milky Way mapping, support and encourage our research. While our search for clues supporting the existence of UELF waves continues, the present working paper provides novel elements of analysis to advance with it.