First Order Statistics Based Feature Selection: A Diverse and Powerful Family of Feature Seleciton Techniques

T. Khoshgoftaar, D. Dittman, Randall Wald, Alireza Fazelpour
{"title":"First Order Statistics Based Feature Selection: A Diverse and Powerful Family of Feature Seleciton Techniques","authors":"T. Khoshgoftaar, D. Dittman, Randall Wald, Alireza Fazelpour","doi":"10.1109/ICMLA.2012.192","DOIUrl":null,"url":null,"abstract":"Dimensionality reduction techniques have become a required step when working with bioinformatics datasets. Techniques such as feature selection have been known to not only improve computation time, but to improve the results of experiments by removing the redundant and irrelevant features or genes from consideration in subsequent analysis. Univariate feature selection techniques in particular are well suited for the large levels of high dimensionality that are inherent in bioinformatics datasets (for example: DNA microarray datasets) due to their intuitive output (a ranked lists of features or genes) and their relatively small computational time compared to other techniques. This paper presents seven univariate feature selection techniques and collects them into a single family entitled First Order Statistics (FOS) based feature selection. These seven all share the trait of using first order statistical measures such as mean and standard deviation, although this is the first work to relate them to one another and consider their performance compared with one another. In order to examine the properties of these seven techniques we performed a series of similarity and classification experiments on eleven DNA microarray datasets. Our results show that in general, each feature selection technique will create diverse feature subsets when compared to the other members of the family. However when we look at classification we find that, with one exception, the techniques will produce good classification results and that the techniques will have similar performances to each other. Our recommendation, is to use the rankers Signal-to-Noise and SAM for the best classification results and to avoid Fold Change Ratio as it is consistently the worst performer of the seven rankers.","PeriodicalId":157399,"journal":{"name":"2012 11th International Conference on Machine Learning and Applications","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 11th International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2012.192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

Abstract

Dimensionality reduction techniques have become a required step when working with bioinformatics datasets. Techniques such as feature selection have been known to not only improve computation time, but to improve the results of experiments by removing the redundant and irrelevant features or genes from consideration in subsequent analysis. Univariate feature selection techniques in particular are well suited for the large levels of high dimensionality that are inherent in bioinformatics datasets (for example: DNA microarray datasets) due to their intuitive output (a ranked lists of features or genes) and their relatively small computational time compared to other techniques. This paper presents seven univariate feature selection techniques and collects them into a single family entitled First Order Statistics (FOS) based feature selection. These seven all share the trait of using first order statistical measures such as mean and standard deviation, although this is the first work to relate them to one another and consider their performance compared with one another. In order to examine the properties of these seven techniques we performed a series of similarity and classification experiments on eleven DNA microarray datasets. Our results show that in general, each feature selection technique will create diverse feature subsets when compared to the other members of the family. However when we look at classification we find that, with one exception, the techniques will produce good classification results and that the techniques will have similar performances to each other. Our recommendation, is to use the rankers Signal-to-Noise and SAM for the best classification results and to avoid Fold Change Ratio as it is consistently the worst performer of the seven rankers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于一阶统计量的特征选择:一个多样化和强大的特征选择技术家族
降维技术已经成为处理生物信息学数据集的必要步骤。众所周知,特征选择等技术不仅可以缩短计算时间,而且可以通过在后续分析中去除冗余和不相关的特征或基因来改善实验结果。单变量特征选择技术特别适合于生物信息学数据集(例如:DNA微阵列数据集)中固有的高维度的大水平,因为它们具有直观的输出(特征或基因的排名列表),并且与其他技术相比,它们的计算时间相对较小。本文提出了七种单变量特征选择技术,并将其归纳为一类基于一阶统计量的特征选择技术。这七种方法都有一个共同的特点,即使用一阶统计方法,如平均值和标准差,尽管这是第一次将它们相互联系起来,并将它们的表现相互比较。为了检验这七种技术的特性,我们对11个DNA微阵列数据集进行了一系列的相似性和分类实验。我们的结果表明,在一般情况下,与家族的其他成员相比,每种特征选择技术将创建不同的特征子集。然而,当我们观察分类时,我们发现,除了一个例外,这些技术将产生良好的分类结果,并且这些技术将具有彼此相似的性能。我们的建议是,使用排名器信号噪声和SAM来获得最佳分类结果,并避免Fold Change Ratio,因为它一直是七个排名器中表现最差的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Excitation Current Forecasting for Reactive Power Compensation in Synchronous Motors: A Data Mining Approach Deep Structure Learning: Beyond Connectionist Approaches Using Twitter Content to Predict Psychopathy A Hybrid Approach to Coping with High Dimensionality and Class Imbalance for Software Defect Prediction O-linked Glycosylation Site Prediction Using Ensemble of Graphical Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1