{"title":"A 300mV-Supply, 144nW-Power, 0.03mm2-Area, 0.2-PEF Digital-Based Biomedical Signal Amplifier in 180nm CMOS","authors":"P. Toledo, H. Klimach, S. Bampi, P. Crovetti","doi":"10.1109/MeMeA52024.2021.9478709","DOIUrl":null,"url":null,"abstract":"This paper presents a power-efficient Ultra Low Voltage (ULV) Fully-Differential (FD) Digital-Based Operational Transconductance Amplifier for Biomedical signal processing (BioDIGOTA), which digitally processes biological analog signals using CMOS standard-cells. Post-layout simulations, including parasitic effects in 180nm CMOS technology, show that BioDIG- OTA consumes only 144 nW at 300 mV of supply voltage while driving a 20 pF capacitive load, with a power efficiency factor (PEF) lower than 1. The layout occupies 0.03 mm2 total silicon area, excluding I/0 pads. The proposed BioDIGOTA proves that digital-based analog design can be adopted in biomedical signal amplifiers, lowering the total silicon area by 2.3X times compared to the current state of the art landscape while keeping reasonable power and system performance.","PeriodicalId":429222,"journal":{"name":"2021 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MeMeA52024.2021.9478709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a power-efficient Ultra Low Voltage (ULV) Fully-Differential (FD) Digital-Based Operational Transconductance Amplifier for Biomedical signal processing (BioDIGOTA), which digitally processes biological analog signals using CMOS standard-cells. Post-layout simulations, including parasitic effects in 180nm CMOS technology, show that BioDIG- OTA consumes only 144 nW at 300 mV of supply voltage while driving a 20 pF capacitive load, with a power efficiency factor (PEF) lower than 1. The layout occupies 0.03 mm2 total silicon area, excluding I/0 pads. The proposed BioDIGOTA proves that digital-based analog design can be adopted in biomedical signal amplifiers, lowering the total silicon area by 2.3X times compared to the current state of the art landscape while keeping reasonable power and system performance.