A Transfer Learning based CNN approach for Classification of Horticulture plantations using Hyperspectral Images

Priyanka Natrajan, Smruthi Rajmohan, S. Sundaram, S. Natarajan, R. Hebbar
{"title":"A Transfer Learning based CNN approach for Classification of Horticulture plantations using Hyperspectral Images","authors":"Priyanka Natrajan, Smruthi Rajmohan, S. Sundaram, S. Natarajan, R. Hebbar","doi":"10.1109/IADCC.2018.8692142","DOIUrl":null,"url":null,"abstract":"Hyperspectral images (HSIs) are satellite images that provide spectral and spatial detail of a given region. This makes them uniquely suitable to classify objects in the scene. Classification of Hyperspectral images can be efficiently performed using the Convolutional Neural Network (CNN) in Machine Learning. In this research, a framework is proposed that leverages Transfer Learning and CNN to classify crop distributions of Horticulture Plantations. The Hyperspectral dataset consists of images and known labels, also known as groundtruth. However, some of the HSIs are unlabelled due to the lack of groundtruth available for the same. Hence, the proposed method adopts the Transfer Learning technique to overcome this. The model was trained on a publicly available and labelled hyperspectral dataset. This was then tested on the field samples of Chikkaballapur district of Karnataka, India which was provided by the Indian Space Research Organisation (ISRO). The CNN built leverages both the spectral and spatial correlations of the HSIs. Due to the amount of detail in HSIs, they are fed in as patches into the convolutional layers of the network. The diverse information provided by these images is exploited by deploying a three-dimensional kernel. This joint representation of both spectral and spatial information provides higher discriminating power, thus allowing a more accurate classification of the crop distributions in the field. The experimental results of this method prove that feeding images as patches trains the CNN better and applying Transfer Learning has a more generic and wider scope.","PeriodicalId":365713,"journal":{"name":"2018 IEEE 8th International Advance Computing Conference (IACC)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 8th International Advance Computing Conference (IACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IADCC.2018.8692142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Hyperspectral images (HSIs) are satellite images that provide spectral and spatial detail of a given region. This makes them uniquely suitable to classify objects in the scene. Classification of Hyperspectral images can be efficiently performed using the Convolutional Neural Network (CNN) in Machine Learning. In this research, a framework is proposed that leverages Transfer Learning and CNN to classify crop distributions of Horticulture Plantations. The Hyperspectral dataset consists of images and known labels, also known as groundtruth. However, some of the HSIs are unlabelled due to the lack of groundtruth available for the same. Hence, the proposed method adopts the Transfer Learning technique to overcome this. The model was trained on a publicly available and labelled hyperspectral dataset. This was then tested on the field samples of Chikkaballapur district of Karnataka, India which was provided by the Indian Space Research Organisation (ISRO). The CNN built leverages both the spectral and spatial correlations of the HSIs. Due to the amount of detail in HSIs, they are fed in as patches into the convolutional layers of the network. The diverse information provided by these images is exploited by deploying a three-dimensional kernel. This joint representation of both spectral and spatial information provides higher discriminating power, thus allowing a more accurate classification of the crop distributions in the field. The experimental results of this method prove that feeding images as patches trains the CNN better and applying Transfer Learning has a more generic and wider scope.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于迁移学习的高光谱园艺种植园分类CNN方法
高光谱图像(hsi)是提供给定区域的光谱和空间细节的卫星图像。这使得它们非常适合对场景中的物体进行分类。机器学习中的卷积神经网络(CNN)可以有效地对高光谱图像进行分类。在本研究中,提出了一个利用迁移学习和CNN对园艺种植园作物分布进行分类的框架。高光谱数据集由图像和已知标签组成,也称为groundtruth。然而,一些hsi是未标记的,因为缺乏相同的基础真相。因此,本文提出的方法采用迁移学习技术来克服这一问题。该模型是在一个公开可用和标记的高光谱数据集上训练的。然后在印度空间研究组织(ISRO)提供的印度卡纳塔克邦奇卡巴拉普尔地区的实地样本上进行了测试。建立的CNN利用了hsi的光谱和空间相关性。由于hsi中的大量细节,它们作为补丁被馈送到网络的卷积层中。通过部署三维内核,可以利用这些图像提供的各种信息。这种光谱和空间信息的联合表示提供了更高的判别能力,从而可以更准确地对田间作物分布进行分类。该方法的实验结果证明,将图像作为patch馈送能更好地训练CNN,应用迁移学习具有更通用和更广泛的范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Discovering Motifs in DNA Sequences: A Suffix Tree Based Approach Prediction Model for Automated Leaf Disease Detection & Analysis Blind navigation using ambient crowd analysis HUPM: Efficient High Utility Pattern Mining Algorithm for E-Business Algorithm to Quantify the Low and High Resolution HLA Matching in Renal Transplantation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1