Computing the Lowest-Order Element of a Multivariate Elimination Ideal by Using Remainder Sequences

Tateaki Sasaki, D. Inaba
{"title":"Computing the Lowest-Order Element of a Multivariate Elimination Ideal by Using Remainder Sequences","authors":"Tateaki Sasaki, D. Inaba","doi":"10.1109/SYNASC.2018.00019","DOIUrl":null,"url":null,"abstract":"Given a set of m+1 multivariate polynomials, with m > 1, in main variables x_1,...,x_m and sub-variables u_1,...,u_n, we can usually eliminate x_1,...,x_m and obtain a polynomial in u_1,...,u_n only. There are basically two methods to perform this elimination. One is the so-called resultant method and the other is the Groebner basis method. The Groebner basis method gives the lowest-order element \\haS(u) of the elimination ideal, where (u) = (u_1,...,u_n), but it is often very slow. The resultant method is quite fast, but the resulting polynomial R(u) often contains many more terms than \\haS(u). In this paper, we present a simple method of computing \\haS(u) by the repeated computation of PRSs (polynomial remainder sequences). The idea is to compute PRSs by changing their arguments systematically and obtain polynomials R_1(u),...,R_k(u), k > 1, in the sub-variables only. Let \\baS(u) be the GCD of R_1,...,R_k. Then, our main theorem asserts that \\baS(u) is a multiple of \\haS(u): \\baS(u) = \\tie(u)\\haS(u). We call \\tie(u) the extraneous factor and it often consists of a small number of terms. We present three conditions and one sub-method to remove \\tie(u) from \\baS(u).","PeriodicalId":273805,"journal":{"name":"2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2018.00019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Given a set of m+1 multivariate polynomials, with m > 1, in main variables x_1,...,x_m and sub-variables u_1,...,u_n, we can usually eliminate x_1,...,x_m and obtain a polynomial in u_1,...,u_n only. There are basically two methods to perform this elimination. One is the so-called resultant method and the other is the Groebner basis method. The Groebner basis method gives the lowest-order element \haS(u) of the elimination ideal, where (u) = (u_1,...,u_n), but it is often very slow. The resultant method is quite fast, but the resulting polynomial R(u) often contains many more terms than \haS(u). In this paper, we present a simple method of computing \haS(u) by the repeated computation of PRSs (polynomial remainder sequences). The idea is to compute PRSs by changing their arguments systematically and obtain polynomials R_1(u),...,R_k(u), k > 1, in the sub-variables only. Let \baS(u) be the GCD of R_1,...,R_k. Then, our main theorem asserts that \baS(u) is a multiple of \haS(u): \baS(u) = \tie(u)\haS(u). We call \tie(u) the extraneous factor and it often consists of a small number of terms. We present three conditions and one sub-method to remove \tie(u) from \baS(u).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用余数列计算多元消元理想的最低阶元
给定一组m+1个多元多项式,其中m > 1,主变量为x_1,…,x_m和子变量u_1,…,u_n,我们通常可以消去x_1,…,x_m,得到一个多项式在u_1,…,只u_n。基本上有两种方法来执行这种消除。一种是所谓的合成法,另一种是格罗布纳基法。Groebner基方法给出了消元理想的最低阶元素\haS(u),其中(u) = (u_1,…,u_n),但它通常很慢。得到的方法相当快,但是得到的多项式R(u)通常比\haS(u)包含更多的项。本文提出了一种通过重复计算多项式余数序列来计算\haS(u)的简单方法。其思想是通过系统地改变它们的参数来计算prs,并仅在子变量中获得多项式R_1(u),…,R_k(u), k > 1。设\baS(u)为R_1,…,R_k的GCD。然后,我们的主要定理断言\baS(u)是\haS(u)的倍数:\baS(u) = \tie(u)\haS(u)。我们称\tie(u)为无关因子,它通常由少量项组成。我们提出了从\baS(u)中去除\tie(u)的三个条件和一个子方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Inferring, Learning and Modelling Complex Systems with Bayesian Networks. A Tutorial An Improved Approach to Software Defect Prediction using a Hybrid Machine Learning Model Proving Reachability Properties by Coinduction (Extended Abstract) An Image Inpainting Technique Based on Parallel Projection Methods Face Detection and Recognition Methods using Deep Learning in Autonomous Driving
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1