Coupled feature selection for modality-dependent cross-media retrieval

En Yu, Jiande Sun, Li Wang, Huaxiang Zhang, Jing Li
{"title":"Coupled feature selection for modality-dependent cross-media retrieval","authors":"En Yu, Jiande Sun, Li Wang, Huaxiang Zhang, Jing Li","doi":"10.1109/ISPACS.2017.8266495","DOIUrl":null,"url":null,"abstract":"With the explosive growth of the multi-media data, the cross-media retrieval technology has drawn much attention. Previous methods usually used the 12-norm for the regularization constraint when learning the projection matrices, which can' use the informative and discriminative features to reach the better performance. In this paper, we propose the coupled feature selection model for cross-media retrieval(CFSCR) based on the modality-dependent method. In details, the proposée framework learns two couples of projection matrices for two retrieval sub-tasks(I2T and T2I), and uses the 12ji-nom for coupled feature selection when learning the mapping matrices, which not only considers the the measure of relevan« but also aims to select informative and discriminative feature; from image and text feature spaces. Experiment results or three different dataseis demonstrate that our method perform: better than the state-of-the-art methods.","PeriodicalId":166414,"journal":{"name":"2017 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","volume":"77 4 Pt 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPACS.2017.8266495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the explosive growth of the multi-media data, the cross-media retrieval technology has drawn much attention. Previous methods usually used the 12-norm for the regularization constraint when learning the projection matrices, which can' use the informative and discriminative features to reach the better performance. In this paper, we propose the coupled feature selection model for cross-media retrieval(CFSCR) based on the modality-dependent method. In details, the proposée framework learns two couples of projection matrices for two retrieval sub-tasks(I2T and T2I), and uses the 12ji-nom for coupled feature selection when learning the mapping matrices, which not only considers the the measure of relevan« but also aims to select informative and discriminative feature; from image and text feature spaces. Experiment results or three different dataseis demonstrate that our method perform: better than the state-of-the-art methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模态相关跨媒体检索的耦合特征选择
随着多媒体数据的爆炸式增长,跨媒体检索技术越来越受到人们的关注。以往的方法在学习投影矩阵时通常使用12范数作为正则化约束,无法利用信息和判别特征达到更好的性能。本文提出了一种基于模态依赖方法的跨媒体检索耦合特征选择模型。具体而言,该框架为两个检索子任务(I2T和T2I)学习两对投影矩阵,并在学习映射矩阵时使用12ji-nom进行耦合特征选择,既考虑了相关性的度量,又旨在选择信息性和判别性的特征;从图像和文本特征空间。实验结果或三个不同的数据表明,我们的方法优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An anti-copyscheme for laser label based on digitial watermarking A CNN-based segmentation model for segmenting foreground by a probability map A current-feedback method for programming memristor array in bidirectional associative memory Community mining algorithm of complex network based on memetic algorithm Multi-exposure image fusion quality assessment using contrast information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1