Employing boosting to compare cues to verbal feedback in multi-lingual dialog

Gina-Anne Levow, Siwei Wang
{"title":"Employing boosting to compare cues to verbal feedback in multi-lingual dialog","authors":"Gina-Anne Levow, Siwei Wang","doi":"10.1109/SLT.2012.6424199","DOIUrl":null,"url":null,"abstract":"Verbal feedback provides important cues in establishing interactional rapport. The challenge of recognizing contexts for verbal feedback largely arises from relative sparseness and optionality. In addition, cross-language and inter-speaker variations can make recognition more difficult. In this paper, we show that boosting can improve accuracy in recognizing contexts for verbal feedback based on prosodic cues. In our experiments, we use dyads from three languages (English, Spanish and Arabic) to evaluate two boosting methods, generalized Adaboost and Gradient Boosting Trees, against Support Vector Machines (SVMs) and a naive baseline, with explicit oversampling on the minority verbal feedback instances. We find that both boosting methods outperform the baseline and SVM classifiers. Analysis of the feature weighting by the boosted classifiers highlights differences and similarities in the prosodic cues employed by members of these diverse language/cultural groups.","PeriodicalId":375378,"journal":{"name":"2012 IEEE Spoken Language Technology Workshop (SLT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2012.6424199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Verbal feedback provides important cues in establishing interactional rapport. The challenge of recognizing contexts for verbal feedback largely arises from relative sparseness and optionality. In addition, cross-language and inter-speaker variations can make recognition more difficult. In this paper, we show that boosting can improve accuracy in recognizing contexts for verbal feedback based on prosodic cues. In our experiments, we use dyads from three languages (English, Spanish and Arabic) to evaluate two boosting methods, generalized Adaboost and Gradient Boosting Trees, against Support Vector Machines (SVMs) and a naive baseline, with explicit oversampling on the minority verbal feedback instances. We find that both boosting methods outperform the baseline and SVM classifiers. Analysis of the feature weighting by the boosted classifiers highlights differences and similarities in the prosodic cues employed by members of these diverse language/cultural groups.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在多语言对话中运用促进法比较线索与口头反馈
口头反馈为建立互动关系提供了重要线索。识别口头反馈上下文的挑战主要来自相对稀疏性和可选性。此外,跨语言和说话者之间的差异会使识别变得更加困难。在本文中,我们证明了增强可以提高基于韵律线索的口头反馈识别上下文的准确性。在我们的实验中,我们使用来自三种语言(英语,西班牙语和阿拉伯语)的二元组来评估两种增强方法,广义Adaboost和梯度增强树,针对支持向量机(svm)和朴素基线,对少数口头反馈实例进行显式过采样。我们发现两种增强方法都优于基线和支持向量机分类器。通过增强分类器对特征权重的分析,突出了这些不同语言/文化群体成员所使用的韵律线索的异同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Combining criteria for the detection of incorrect entries of non-native speech in the context of foreign language learning Two-layer mutually reinforced random walk for improved multi-party meeting summarization Train&align: A new online tool for automatic phonetic alignment Automatic detection and correction of syntax-based prosody annotation errors Word segmentation through cross-lingual word-to-phoneme alignment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1