{"title":"Hardware-backpropagation learning of neuron MOS neural networks","authors":"H. Ishii, T. Shibata, H. Kosaka, T. Ohmi","doi":"10.1109/IEDM.1992.307395","DOIUrl":null,"url":null,"abstract":"This paper describes the design and architecture of a neural network having a hardware-learning capability, in which a functional transistor called neuron MOSFET (neuMOS or vMOS) is utilized as a key element. In order to implement learning algorithm on the chip, a new hardware-oriented backpropagation learning algorithm has been developed by modifying and simplifying the original backpropagation algorithm. In addition, a six-transistor synapse cell which is free from standby power dissipation and is capable of representing both positive and negative weights (excitatory and inhibitory synapse functions) under a single 5 V power supply has been developed for use on a self-learning chip.<<ETX>>","PeriodicalId":287098,"journal":{"name":"1992 International Technical Digest on Electron Devices Meeting","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1992 International Technical Digest on Electron Devices Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.1992.307395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27
Abstract
This paper describes the design and architecture of a neural network having a hardware-learning capability, in which a functional transistor called neuron MOSFET (neuMOS or vMOS) is utilized as a key element. In order to implement learning algorithm on the chip, a new hardware-oriented backpropagation learning algorithm has been developed by modifying and simplifying the original backpropagation algorithm. In addition, a six-transistor synapse cell which is free from standby power dissipation and is capable of representing both positive and negative weights (excitatory and inhibitory synapse functions) under a single 5 V power supply has been developed for use on a self-learning chip.<>