Considering Common Data Model for Indoor Location-aware Services

L. Niu, S. Matsumoto, S. Saiki, Masahide Nakamura
{"title":"Considering Common Data Model for Indoor Location-aware Services","authors":"L. Niu, S. Matsumoto, S. Saiki, Masahide Nakamura","doi":"10.1145/2663713.2664423","DOIUrl":null,"url":null,"abstract":"Indoor positioning system (IPS) identifies positions of various indoor objects, and is a key technology to achieve sophisticated Indoor Location-Aware Services (InLAS). In most conventional systems, InLAS and IPS are tightly coupled. That is, one system does not supposed to reuse indoor location data and program of another system. This makes individual systems complex and difficult to manage. To cope with the problem, we propose Data Model for Indoor Location (DM4InL), which prescribes a common data schema, independent of implementation of IPS or the usage of InLAS. The proposed DM4InL represents the location of every indoor object in a standard way, by using three kinds of models: location, building and object models. We also design the fundamental API, which implements typical queries to the indoor location data from external applications. The proposed method achieves loose-coupling of InLAS and IPS, which significantly improves the efficiency and reusability in the InLAS development.","PeriodicalId":320466,"journal":{"name":"International Workshop on Location and the Web","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Location and the Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2663713.2664423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Indoor positioning system (IPS) identifies positions of various indoor objects, and is a key technology to achieve sophisticated Indoor Location-Aware Services (InLAS). In most conventional systems, InLAS and IPS are tightly coupled. That is, one system does not supposed to reuse indoor location data and program of another system. This makes individual systems complex and difficult to manage. To cope with the problem, we propose Data Model for Indoor Location (DM4InL), which prescribes a common data schema, independent of implementation of IPS or the usage of InLAS. The proposed DM4InL represents the location of every indoor object in a standard way, by using three kinds of models: location, building and object models. We also design the fundamental API, which implements typical queries to the indoor location data from external applications. The proposed method achieves loose-coupling of InLAS and IPS, which significantly improves the efficiency and reusability in the InLAS development.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
考虑室内位置感知服务的通用数据模型
室内定位系统(IPS)能够识别室内各种物体的位置,是实现复杂的室内位置感知服务(InLAS)的关键技术。在大多数传统系统中,InLAS和IPS是紧密耦合的。也就是说,一个系统不应该重复使用另一个系统的室内位置数据和程序。这使得单个系统变得复杂且难以管理。为了解决这个问题,我们提出了室内定位数据模型(DM4InL),它规定了一个通用的数据模式,独立于IPS的实现或InLAS的使用。提出的DM4InL通过使用三种模型:位置、建筑和物体模型,以标准的方式表示每个室内物体的位置。我们还设计了基本的API,实现了从外部应用程序对室内位置数据的典型查询。该方法实现了InLAS与IPS的松耦合,显著提高了InLAS开发的效率和可重用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Two Ways of Thinking About Where People Go Automatic Zoom Level Prediction for Informal Location Descriptions HMM-based Address Parsing with Massive Synthetic Training Data Generation Hybrid Quantized Resource Descriptions for Geospatial Source Selection Considering Common Data Model for Indoor Location-aware Services
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1