Temporal modeling in neural network based statistical parametric speech synthesis

K. Tokuda, Kei Hashimoto, Keiichiro Oura, Yoshihiko Nankaku
{"title":"Temporal modeling in neural network based statistical parametric speech synthesis","authors":"K. Tokuda, Kei Hashimoto, Keiichiro Oura, Yoshihiko Nankaku","doi":"10.21437/SSW.2016-18","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel neural network structure for speech synthesis, in which spectrum, F0 and duration parameters are simultaneously modeled in a unified framework. In the conventional neural network approaches, spectrum and F0 parameters are predicted by neural networks while phone and/or state durations are given from other external duration predictors. In order to consistently model not only spectrum and F0 parameters but also durations, we adopt a special type of mixture density network (MDN) structure, which models utterance level probability density functions conditioned on the corresponding input feature sequence. This is achieved by modeling the conditional probability distribution of utterance level output features, given input features, with a hidden semi-Markov model, where its parameters are generated using a neural network trained with a log likelihood-based loss function. Variations of the proposed neural network structure are also discussed. Subjective listening test results show that the proposed approach improves the naturalness of synthesized speech.","PeriodicalId":340820,"journal":{"name":"Speech Synthesis Workshop","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Speech Synthesis Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/SSW.2016-18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

This paper proposes a novel neural network structure for speech synthesis, in which spectrum, F0 and duration parameters are simultaneously modeled in a unified framework. In the conventional neural network approaches, spectrum and F0 parameters are predicted by neural networks while phone and/or state durations are given from other external duration predictors. In order to consistently model not only spectrum and F0 parameters but also durations, we adopt a special type of mixture density network (MDN) structure, which models utterance level probability density functions conditioned on the corresponding input feature sequence. This is achieved by modeling the conditional probability distribution of utterance level output features, given input features, with a hidden semi-Markov model, where its parameters are generated using a neural network trained with a log likelihood-based loss function. Variations of the proposed neural network structure are also discussed. Subjective listening test results show that the proposed approach improves the naturalness of synthesized speech.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于神经网络的统计参数语音合成中的时间建模
本文提出了一种新的用于语音合成的神经网络结构,该结构将频谱、F0和持续时间参数同时建模在一个统一的框架中。在传统的神经网络方法中,频谱和F0参数由神经网络预测,而电话和/或状态持续时间由其他外部持续时间预测器给出。为了对频谱和F0参数以及持续时间进行一致的建模,我们采用了一种特殊类型的混合密度网络(MDN)结构,该结构根据相应的输入特征序列对话语级概率密度函数进行建模。这是通过使用隐式半马尔可夫模型对给定输入特征的话语级输出特征的条件概率分布进行建模来实现的,其中其参数是使用基于对数似然损失函数训练的神经网络生成的。本文还讨论了所提出的神经网络结构的变化。主观听力测试结果表明,该方法提高了合成语音的自然度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Archiving pushed Inferences from Sensor Data Streams Parallel and cascaded deep neural networks for text-to-speech synthesis Merlin: An Open Source Neural Network Speech Synthesis System A Comparative Study of the Performance of HMM, DNN, and RNN based Speech Synthesis Systems Trained on Very Large Speaker-Dependent Corpora Nonaudible murmur enhancement based on statistical voice conversion and noise suppression with external noise monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1