{"title":"Learning of the Non-threshold Functions of Multiple-Valued Logic by a Single Multi-valued Neuron with a Periodic Activation Function","authors":"I. Aizenberg","doi":"10.1109/ISMVL.2010.15","DOIUrl":null,"url":null,"abstract":"In this paper, a theory of multiple-valued threshold functions over the field of complex numbers is further developed. k-valued threshold functions over the field of complex numbers can be learned using a single multi-valued neuron (MVN). We propose a new approach for the projection of a k-valued function, which is not a threshold one, to m-valued logic (m≫k), where this function becomes a partially defined m-valued threshold function and can be learned by a single MVN. To build this projection, a periodic activation function for the MVN is used. This new activation function and a modified learning algorithm make it possible to learn nonlinearly separable multiple-valued functions using a single MVN.","PeriodicalId":447743,"journal":{"name":"2010 40th IEEE International Symposium on Multiple-Valued Logic","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 40th IEEE International Symposium on Multiple-Valued Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.2010.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
In this paper, a theory of multiple-valued threshold functions over the field of complex numbers is further developed. k-valued threshold functions over the field of complex numbers can be learned using a single multi-valued neuron (MVN). We propose a new approach for the projection of a k-valued function, which is not a threshold one, to m-valued logic (m≫k), where this function becomes a partially defined m-valued threshold function and can be learned by a single MVN. To build this projection, a periodic activation function for the MVN is used. This new activation function and a modified learning algorithm make it possible to learn nonlinearly separable multiple-valued functions using a single MVN.