Post-impact adaptive compliance for humanoid falls using predictive control of a reduced model

V. Samy, Stéphane Caron, Karim Bouyarmane, A. Kheddar
{"title":"Post-impact adaptive compliance for humanoid falls using predictive control of a reduced model","authors":"V. Samy, Stéphane Caron, Karim Bouyarmane, A. Kheddar","doi":"10.1109/HUMANOIDS.2017.8246942","DOIUrl":null,"url":null,"abstract":"We consider control of a humanoid robot in active compliance just after the impact consecutive to a fall. The goal of this post-impact braking is to absorb undesired linear momentum accumulated during the fall, using a limited supply of time and actuation power. The gist of our method is an optimal distribution of undesired momentum between the robot's hand and foot contact points, followed by the parallel resolution of Linear Model Predictive Control (LMPC) at each contact. This distribution is made possible thanks to torque-limited friction polytopes, an extension of friction cones that takes actuation limits into account. Individual LMPC results are finally combined back into a feasible CoM trajectory sent to the robot's whole-body controller. We validate the solution in full-body dynamics simulation of an HRP-4 humanoid falling on a wall.","PeriodicalId":143992,"journal":{"name":"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HUMANOIDS.2017.8246942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

We consider control of a humanoid robot in active compliance just after the impact consecutive to a fall. The goal of this post-impact braking is to absorb undesired linear momentum accumulated during the fall, using a limited supply of time and actuation power. The gist of our method is an optimal distribution of undesired momentum between the robot's hand and foot contact points, followed by the parallel resolution of Linear Model Predictive Control (LMPC) at each contact. This distribution is made possible thanks to torque-limited friction polytopes, an extension of friction cones that takes actuation limits into account. Individual LMPC results are finally combined back into a feasible CoM trajectory sent to the robot's whole-body controller. We validate the solution in full-body dynamics simulation of an HRP-4 humanoid falling on a wall.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用简化模型预测控制的仿人跌倒后冲击自适应顺应性
我们考虑了一个人形机器人的主动顺应控制后的冲击连续跌倒。这种后冲击制动的目标是吸收在下降过程中积累的不希望的线性动量,使用有限的时间和驱动功率。该方法的要点是在机器人的手和脚接触点之间进行理想动量的最优分布,然后在每个接触点进行线性模型预测控制(LMPC)的并行分辨率。由于扭矩限制摩擦多面体,这种分布成为可能,这是考虑到驱动限制的摩擦锥体的延伸。单个LMPC的结果最后被合并回一个可行的CoM轨迹,发送给机器人的全身控制器。在HRP-4型人形机器人坠墙的全身动力学仿真中验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stiffness evaluation of a tendon-driven robot with variable joint stiffness mechanisms Investigations of viscoelastic liquid cooled actuators applied for dynamic motion control of legged systems Tilt estimator for 3D non-rigid pendulum based on a tri-axial accelerometer and gyrometer Optimal and robust walking using intrinsic properties of a series-elastic robot Experimental evaluation of simple estimators for humanoid robots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1