{"title":"Best-First Width Search for Lifted Classical Planning","authors":"Augusto B. Corrêa, Jendrik Seipp","doi":"10.1609/icaps.v32i1.19780","DOIUrl":null,"url":null,"abstract":"Lifted planners are useful to solve tasks that are too hard to ground. Still, computing informative lifted heuristics is difficult: directly adapting ground heuristics to the lifted setting is often too expensive, and extracting heuristics from the lifted representation can be uninformative. A natural alternative for lifted planners is to use width-based search. These algorithms are among the strongest for ground planning, even the variants that do not access the action model. In this work, we adapt best-first width search to the lifted setting and show that this yields state-of-the-art performance for hard-to-ground planning tasks.","PeriodicalId":239898,"journal":{"name":"International Conference on Automated Planning and Scheduling","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Automated Planning and Scheduling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/icaps.v32i1.19780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Lifted planners are useful to solve tasks that are too hard to ground. Still, computing informative lifted heuristics is difficult: directly adapting ground heuristics to the lifted setting is often too expensive, and extracting heuristics from the lifted representation can be uninformative. A natural alternative for lifted planners is to use width-based search. These algorithms are among the strongest for ground planning, even the variants that do not access the action model. In this work, we adapt best-first width search to the lifted setting and show that this yields state-of-the-art performance for hard-to-ground planning tasks.