Best-First Width Search for Lifted Classical Planning

Augusto B. Corrêa, Jendrik Seipp
{"title":"Best-First Width Search for Lifted Classical Planning","authors":"Augusto B. Corrêa, Jendrik Seipp","doi":"10.1609/icaps.v32i1.19780","DOIUrl":null,"url":null,"abstract":"Lifted planners are useful to solve tasks that are too hard to ground. Still, computing informative lifted heuristics is difficult: directly adapting ground heuristics to the lifted setting is often too expensive, and extracting heuristics from the lifted representation can be uninformative. A natural alternative for lifted planners is to use width-based search. These algorithms are among the strongest for ground planning, even the variants that do not access the action model. In this work, we adapt best-first width search to the lifted setting and show that this yields state-of-the-art performance for hard-to-ground planning tasks.","PeriodicalId":239898,"journal":{"name":"International Conference on Automated Planning and Scheduling","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Automated Planning and Scheduling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/icaps.v32i1.19780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Lifted planners are useful to solve tasks that are too hard to ground. Still, computing informative lifted heuristics is difficult: directly adapting ground heuristics to the lifted setting is often too expensive, and extracting heuristics from the lifted representation can be uninformative. A natural alternative for lifted planners is to use width-based search. These algorithms are among the strongest for ground planning, even the variants that do not access the action model. In this work, we adapt best-first width search to the lifted setting and show that this yields state-of-the-art performance for hard-to-ground planning tasks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
解除经典规划的最佳优先宽度搜索
举起来的计划对于解决那些难以落地的任务很有用。然而,计算信息提升启发式是困难的:直接使地面启发式适应提升设置通常过于昂贵,并且从提升表示中提取启发式可能没有信息。对于提升的计划者来说,一个自然的选择是使用基于宽度的搜索。这些算法在地面规划中是最强的,即使是不访问行动模型的变体。在这项工作中,我们将最佳优先宽度搜索应用于提升设置,并表明这为难以落地的规划任务提供了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast and Robust Resource-Constrained Scheduling with Graph Neural Networks Solving the Multi-Choice Two Dimensional Shelf Strip Packing Problem with Time Windows Generalizing Action Justification and Causal Links to Policies Exact Anytime Multi-Agent Path Finding Using Branch-and-Cut-and-Price and Large Neighborhood Search A Constraint Programming Solution to the Guillotine Rectangular Cutting Problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1