Wi-Fi Fingerprint localisation using Density-based Clustering for public spaces: A case study in a shopping mall

Sian Lun Lau, Cornelius Toh, Y. Saleem
{"title":"Wi-Fi Fingerprint localisation using Density-based Clustering for public spaces: A case study in a shopping mall","authors":"Sian Lun Lau, Cornelius Toh, Y. Saleem","doi":"10.1109/CONFLUENCE.2016.7508143","DOIUrl":null,"url":null,"abstract":"Indoor localisation is to-date still an active research area. This paper presents a case study on a localisation technique using Wi-Fi fingerprints built from radio information collected using commercially-off-the-shelf smartphones. The Wi-Fi fingerprints are built using density-based clustering-based algorithms. The investigation is carried out on normal operation scenarios, where a normal crowd was present during the experiments. A simplified version of the clustering algorithm, the Simplified Fingerprint Density-based Clustering Algorithm (SFDCA), is proposed, implemented as well as evaluated with a comparison to an existing indoor localisation algorithm called Density-based Cluster Combined Algorithm (DCCLA). Furthermore, a few changes are proposed and evaluated for the recognition algorithm. This paper discusses the obtained results, observations and issues faced in the case study.","PeriodicalId":299044,"journal":{"name":"2016 6th International Conference - Cloud System and Big Data Engineering (Confluence)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 6th International Conference - Cloud System and Big Data Engineering (Confluence)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CONFLUENCE.2016.7508143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Indoor localisation is to-date still an active research area. This paper presents a case study on a localisation technique using Wi-Fi fingerprints built from radio information collected using commercially-off-the-shelf smartphones. The Wi-Fi fingerprints are built using density-based clustering-based algorithms. The investigation is carried out on normal operation scenarios, where a normal crowd was present during the experiments. A simplified version of the clustering algorithm, the Simplified Fingerprint Density-based Clustering Algorithm (SFDCA), is proposed, implemented as well as evaluated with a comparison to an existing indoor localisation algorithm called Density-based Cluster Combined Algorithm (DCCLA). Furthermore, a few changes are proposed and evaluated for the recognition algorithm. This paper discusses the obtained results, observations and issues faced in the case study.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于密度聚类的公共空间Wi-Fi指纹定位:以购物中心为例
到目前为止,室内定位仍然是一个活跃的研究领域。本文介绍了一个使用商用智能手机收集的无线电信息构建的Wi-Fi指纹定位技术的案例研究。Wi-Fi指纹是使用基于密度的聚类算法构建的。调查是在正常的操作场景中进行的,在实验期间有正常人群在场。本文提出了一种简化版本的聚类算法,即基于指纹密度的简化聚类算法(SFDCA),并与现有的基于密度的聚类组合算法(DCCLA)进行了比较。在此基础上,对识别算法进行了改进和评价。本文讨论了案例研究的结果、观察结果和面临的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Big Data capabilities and readiness of South African retail organisations Heuristic model to improve Feature Selection based on Machine Learning in Data Mining Image processing based degraded camera captured document enhancement for improved OCR accuracy Development of IoT based smart security and monitoring devices for agriculture A comprehensive study on Facial Expressions Recognition Techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1