A New Single Event Transient Hardened Floating Gate Configurable Logic Circuit

S. Azimi, C. D. Sio, Weitao Yang, L. Sterpone
{"title":"A New Single Event Transient Hardened Floating Gate Configurable Logic Circuit","authors":"S. Azimi, C. D. Sio, Weitao Yang, L. Sterpone","doi":"10.1109/newcas49341.2020.9159844","DOIUrl":null,"url":null,"abstract":"Radiation-induced soft errors have become a significant reliability challenge in modern CMOS logic. The main concern for safety-critical applications such aerospace is due to Single Event Transient (SET) effects. SETs are exacerbated by the technology scaling of modern technologies especially when they are adopted in harsh environments. This paper evaluates the SET sensitivity of state-of-the-art floating gate configurable logic circuit and proposes a novel methodology for filtering a SET pulse generated inside the logic cells by increasing the charge sharing effect on the sensitive node of a cell due to remapping of its configurable switches. Experimental results, performed with radiation particle simulation on several benchmark circuits implemented in a 130nm floating-gate device demonstrate an improvement in filtering SET effects of more than 24% on the average with negligible delay degradation.","PeriodicalId":135163,"journal":{"name":"2020 18th IEEE International New Circuits and Systems Conference (NEWCAS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 18th IEEE International New Circuits and Systems Conference (NEWCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/newcas49341.2020.9159844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Radiation-induced soft errors have become a significant reliability challenge in modern CMOS logic. The main concern for safety-critical applications such aerospace is due to Single Event Transient (SET) effects. SETs are exacerbated by the technology scaling of modern technologies especially when they are adopted in harsh environments. This paper evaluates the SET sensitivity of state-of-the-art floating gate configurable logic circuit and proposes a novel methodology for filtering a SET pulse generated inside the logic cells by increasing the charge sharing effect on the sensitive node of a cell due to remapping of its configurable switches. Experimental results, performed with radiation particle simulation on several benchmark circuits implemented in a 130nm floating-gate device demonstrate an improvement in filtering SET effects of more than 24% on the average with negligible delay degradation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种新的单事件瞬态硬化浮门可配置逻辑电路
辐射引起的软误差已成为现代CMOS逻辑可靠性的重大挑战。对于航空航天等安全关键应用,主要关注的是单事件瞬态(SET)效应。现代技术的技术规模化加剧了环境污染,特别是在恶劣环境中采用这些技术时。本文评估了当前最先进的浮动门可配置逻辑电路的SET灵敏度,并提出了一种新的方法来滤波逻辑单元内部产生的SET脉冲,该方法通过增加单元敏感节点上的电荷共享效应来实现其可配置开关的重新映射。在130nm浮栅器件上的几个基准电路上进行了辐射粒子模拟实验,结果表明,滤波SET效果平均提高了24%以上,延迟退化可以忽略不计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Neural Networks for Epileptic Seizure Prediction: Algorithms and Hardware Implementation Cascaded tunable distributed amplifiers for serial optical links: Some design rules Motor Task Learning in Brain Computer Interfaces using Time-Dependent Regularized Common Spatial Patterns and Residual Networks Towards GaN500-based High Temperature ICs: Characterization and Modeling up to 600°C A Current Reference with high Robustness to Process and Supply Voltage Variations unaffected by Body Effect upon Threshold Voltage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1