TriX: Triangle counting at extreme scale

Yang Hu, P. Kumar, Guy Swope, Huimin Huang
{"title":"TriX: Triangle counting at extreme scale","authors":"Yang Hu, P. Kumar, Guy Swope, Huimin Huang","doi":"10.1109/HPEC.2017.8091036","DOIUrl":null,"url":null,"abstract":"Triangle counting is widely used in many applications including spam detection, link recommendation, and social network analysis. The DARPA Graph Challenge seeks a scalable solution for triangle counting on big graphs. In this paper we present TriX, a scalable triangle counting framework, which is comprised of a 2-D graph partition strategy and a binary search based intersection algorithm designed for GPUs. The 2-D partition provides balanced work division among multiple GPUs. On the other hand, binary search based intersection achieves fine-grained parallelism on GPUs via intra-warp scheduling and coalesced memory access. TriX is able to scale to a large number of GPUs, and count triangles on billion-node graph (2 billion node, 64 billion edges) within 35 minutes, achieving over 16 million traverse edges per second (TEPS).","PeriodicalId":364903,"journal":{"name":"2017 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC.2017.8091036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

Triangle counting is widely used in many applications including spam detection, link recommendation, and social network analysis. The DARPA Graph Challenge seeks a scalable solution for triangle counting on big graphs. In this paper we present TriX, a scalable triangle counting framework, which is comprised of a 2-D graph partition strategy and a binary search based intersection algorithm designed for GPUs. The 2-D partition provides balanced work division among multiple GPUs. On the other hand, binary search based intersection achieves fine-grained parallelism on GPUs via intra-warp scheduling and coalesced memory access. TriX is able to scale to a large number of GPUs, and count triangles on billion-node graph (2 billion node, 64 billion edges) within 35 minutes, achieving over 16 million traverse edges per second (TEPS).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三角:在极端尺度上的三角形计数
三角计数广泛应用于垃圾邮件检测、链接推荐和社会网络分析等领域。DARPA图形挑战赛寻求在大图形上进行三角形计数的可扩展解决方案。本文提出了一个可扩展的三角形计数框架TriX,该框架由二维图划分策略和基于二分搜索的交叉算法组成。二维分区为多个gpu提供均衡的工作分配。另一方面,基于二进制搜索的交集通过warp内调度和合并内存访问在gpu上实现了细粒度的并行性。TriX能够扩展到大量gpu,并在35分钟内对十亿节点图(20亿个节点,640亿个边)上的三角形进行计数,实现每秒超过1600万遍历边(TEPS)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimized task graph mapping on a many-core neuromorphic supercomputer Software-defined extreme scale networks for bigdata applications Power-aware computing: Measurement, control, and performance analysis for Intel Xeon Phi xDCI, a data science cyberinfrastructure for interdisciplinary research Leakage energy reduction for hard real-time caches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1