{"title":"Cross-Sectional Modeling of Bank Deposits","authors":"Sofia Costa, M. Faias, Pedro Júdice, P. Mota","doi":"10.2139/ssrn.3505393","DOIUrl":null,"url":null,"abstract":"Studying the dynamics of deposits is important for three reasons: first, it serves as an important component of liquidity stress testing; second, it is crucial to asset-liability management exercises and the allocation between liquid and illiquid assets; third, it is the support for a liquidity at risk (LaR) methodology. <br><br>Current models are based on AR(1) processes that often underestimate liquidity risk. Thus a bank relying on those models may face failure in an event of crisis. We propose a novel approach for modeling deposits, using panel data and a momentum term. The model enables the simulation of a variety of deposit trajectories, including episodes of financial distress, showing much higher drawdowns and realistic liquidity at risk estimates, as well as density plots that present a wide range of possible values, corresponding to booms and financial crises.<br><br>Therefore, this methodology is more suitable for liquidity management at banks, as well as for conducting liquidity stress tests.","PeriodicalId":443031,"journal":{"name":"Political Economy - Development: Political Institutions eJournal","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Political Economy - Development: Political Institutions eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3505393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Studying the dynamics of deposits is important for three reasons: first, it serves as an important component of liquidity stress testing; second, it is crucial to asset-liability management exercises and the allocation between liquid and illiquid assets; third, it is the support for a liquidity at risk (LaR) methodology.
Current models are based on AR(1) processes that often underestimate liquidity risk. Thus a bank relying on those models may face failure in an event of crisis. We propose a novel approach for modeling deposits, using panel data and a momentum term. The model enables the simulation of a variety of deposit trajectories, including episodes of financial distress, showing much higher drawdowns and realistic liquidity at risk estimates, as well as density plots that present a wide range of possible values, corresponding to booms and financial crises.
Therefore, this methodology is more suitable for liquidity management at banks, as well as for conducting liquidity stress tests.