A Bi-objective Routing Model for Underwater Wireless Sensor Network

D. Persis
{"title":"A Bi-objective Routing Model for Underwater Wireless Sensor Network","authors":"D. Persis","doi":"10.1145/3325773.3325786","DOIUrl":null,"url":null,"abstract":"Underwater wireless communication is a critical and challenging research area wherein acoustic signals are used to transfer data. The Underwater Wireless Sensor Network (UWSN) is used to transmit data sensed by the sensors in the sea bed to the surface sinks through intermediate nodes for seismic surveillance, border security and underwater environment monitoring applications. The nodes comprising of UWSN are battery operated and are subjected to failures leading to connectivity loss. And the propagation delay in sending the data in the form of acoustic signals is found to be high and as the depth increases the transmission delay also increases. Hence, routing in UWSN is a complex problem. The simulation experiments of the delay sensitive protocols are found to minimize the delay at the expense of network throughput which is not acceptable. The energy aware routing protocols on the other hand reduces energy consumption and routing overhead but has high delay involved in transmission. In this study, transmission delay and reliability estimation models are developed using which bi-objective routing model is proposed considering both delay and reliability in route selection. In the simulation studies, the bi-objective model reduced delay on an average by 9% and the reliability of the network is improved by 34% when compared to the delay sensitive and reliable routing strategies.","PeriodicalId":419017,"journal":{"name":"Proceedings of the 2019 3rd International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 3rd International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3325773.3325786","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Underwater wireless communication is a critical and challenging research area wherein acoustic signals are used to transfer data. The Underwater Wireless Sensor Network (UWSN) is used to transmit data sensed by the sensors in the sea bed to the surface sinks through intermediate nodes for seismic surveillance, border security and underwater environment monitoring applications. The nodes comprising of UWSN are battery operated and are subjected to failures leading to connectivity loss. And the propagation delay in sending the data in the form of acoustic signals is found to be high and as the depth increases the transmission delay also increases. Hence, routing in UWSN is a complex problem. The simulation experiments of the delay sensitive protocols are found to minimize the delay at the expense of network throughput which is not acceptable. The energy aware routing protocols on the other hand reduces energy consumption and routing overhead but has high delay involved in transmission. In this study, transmission delay and reliability estimation models are developed using which bi-objective routing model is proposed considering both delay and reliability in route selection. In the simulation studies, the bi-objective model reduced delay on an average by 9% and the reliability of the network is improved by 34% when compared to the delay sensitive and reliable routing strategies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
水下无线传感器网络的双目标路由模型
水下无线通信是利用声信号传输数据的一个关键和具有挑战性的研究领域。水下无线传感器网络(UWSN)是将海底传感器感知到的数据通过中间节点传输到海面sink,用于地震监测、边境安全和水下环境监测等应用。由UWSN组成的节点是由电池操作的,并且受到导致连接丢失的故障的影响。并且发现以声信号形式发送数据的传播延迟较大,并且随着深度的增加,传输延迟也随之增加。因此,UWSN中的路由是一个复杂的问题。延迟敏感协议的仿真实验发现,以牺牲网络吞吐量为代价来最小化延迟是不可接受的。另一方面,能量感知路由协议减少了能量消耗和路由开销,但在传输过程中涉及到较高的延迟。本文建立了传输时延和可靠性估计模型,并在此基础上建立了考虑时延和可靠性的双目标路由模型。在仿真研究中,与延迟敏感和可靠路由策略相比,双目标模型平均减少了9%的延迟,网络的可靠性提高了34%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Online Password Guessing Method Based on Big Data Feature-Weighted Fuzzy K-Modes Clustering Epilepsy Detection in EEG Signal using Recurrent Neural Network Analysis of Ant Colony Optimization on a Dynamically Changing Optical Burst Switched Network with Impairments Gaussian Process Dynamical Autoencoder Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1