TW-BAG: Tensor-wise Brain-aware Gate Network for Inpainting Disrupted Diffusion Tensor Imaging

Zihao Tang, Xinyi Wang, Lihaowen Zhu, M. Cabezas, Dongnan Liu, Michael H Barnett, Weidong (Tom) Cai, Chengyu Wang
{"title":"TW-BAG: Tensor-wise Brain-aware Gate Network for Inpainting Disrupted Diffusion Tensor Imaging","authors":"Zihao Tang, Xinyi Wang, Lihaowen Zhu, M. Cabezas, Dongnan Liu, Michael H Barnett, Weidong (Tom) Cai, Chengyu Wang","doi":"10.1109/DICTA56598.2022.10034593","DOIUrl":null,"url":null,"abstract":"Diffusion Weighted Imaging (DWI) is an advanced imaging technique commonly used in neuroscience and neurological clinical research through a Diffusion Tensor Imaging (DTI) model. Volumetric scalar metrics including fractional anisotropy, mean diffusivity, and axial diffusivity can be derived from the DTI model to summarise water diffusivity and other quantitative microstructural information for clinical studies. However, clinical practice constraints can lead to sub-optimal DWI acquisitions with missing slices (either due to a limited field of view or the acquisition of disrupted slices). To avoid discarding valuable subjects for group-wise studies, we propose a novel 3D Tensor-Wise Brain-Aware Gate network (TW-BAG) for inpainting disrupted DTIs. The proposed method is tailored to the problem with a dynamic gate mechanism and independent tensor-wise decoders. We evaluated the proposed method on the publicly available Human Connectome Project (HCP) dataset using common image similarity metrics derived from the predicted tensors and scalar DTI metrics. Our experimental results show that the proposed approach can reconstruct the original brain DTI volume and recover relevant clinical imaging information.","PeriodicalId":159377,"journal":{"name":"2022 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA56598.2022.10034593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Diffusion Weighted Imaging (DWI) is an advanced imaging technique commonly used in neuroscience and neurological clinical research through a Diffusion Tensor Imaging (DTI) model. Volumetric scalar metrics including fractional anisotropy, mean diffusivity, and axial diffusivity can be derived from the DTI model to summarise water diffusivity and other quantitative microstructural information for clinical studies. However, clinical practice constraints can lead to sub-optimal DWI acquisitions with missing slices (either due to a limited field of view or the acquisition of disrupted slices). To avoid discarding valuable subjects for group-wise studies, we propose a novel 3D Tensor-Wise Brain-Aware Gate network (TW-BAG) for inpainting disrupted DTIs. The proposed method is tailored to the problem with a dynamic gate mechanism and independent tensor-wise decoders. We evaluated the proposed method on the publicly available Human Connectome Project (HCP) dataset using common image similarity metrics derived from the predicted tensors and scalar DTI metrics. Our experimental results show that the proposed approach can reconstruct the original brain DTI volume and recover relevant clinical imaging information.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TW-BAG:基于张量的脑感知门网络
弥散加权成像(Diffusion Weighted Imaging, DWI)是一种通过弥散张量成像(Diffusion Tensor Imaging, DTI)模型在神经科学和神经学临床研究中常用的先进成像技术。体积标量指标包括分数各向异性、平均扩散率和轴向扩散率可以从DTI模型中导出,以总结水扩散率和其他定量显微结构信息,用于临床研究。然而,临床实践的限制可能导致缺少切片的次优DWI采集(由于视野有限或获取破坏的切片)。为了避免丢弃有价值的群体研究对象,我们提出了一种新的3D张量智能脑觉门网络(TW-BAG)用于绘制中断的dti。该方法是针对具有动态门机制和独立张量解码器的问题而设计的。我们使用来自预测张量和标量DTI度量的常见图像相似性度量,在公开可用的人类连接组项目(HCP)数据集上评估了所提出的方法。实验结果表明,该方法可以重建原始脑DTI体积,恢复相关临床影像信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FootSeg: Automatic Anatomical Segmentation of Foot Bones from Weight-Bearing Cone Beam CT Scans KENGIC: KEyword-driven and N-Gram Graph based Image Captioning Swin-ResUNet: A Swin-Topology Module for Road Extraction from Remote Sensing Images A Multi-Granularity Feature Fusion Model for Pedestrian Attribute Recognition Disentangling Convolutional Neural Network towards an explainable Vehicle Classifier
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1