IDENTIFIKASI PENGENALAN WAJAH UNTUK SISTEM PRESENSI MENGGUNAKAN METODE KNN (K-NEAREST NEIGHBOR)

D. Yulianti, I. Triastomoro, Sofia Sa’idah
{"title":"IDENTIFIKASI PENGENALAN WAJAH UNTUK SISTEM PRESENSI MENGGUNAKAN METODE KNN (K-NEAREST NEIGHBOR)","authors":"D. Yulianti, I. Triastomoro, Sofia Sa’idah","doi":"10.37600/tekinkom.v5i1.477","DOIUrl":null,"url":null,"abstract":"Attendance is an activity that is so important and cannot be separated from a teaching and learning activity to calculate and see student attendance. In this Final Project, research on the automatic attendance system is carried out through facial recognition identification (face recognition) using a webcam as a system input, then the resulting image capture results from each image will be processed through feature extraction using the LBPH (Local Binary Pattern Histogram) method and classification with the KNN (K-Nearest Neighbor) method and the help of OpenCV library-based Python software. The research in this Final Project obtained an average accuracy value in facial recognition using LBPH (Local Binary Pattern Histogram) of 93.9%, with an average FAR value of 4.66% and an average FRR value of 1.33%. For the classification of KNN (K-Nearest Neighbor) using Euclidean Distance when k = 1 obtained an accuracy of 100% with a computation time of 34 ms, at the time of k = 3 an accuracy of 98% with a computation time of 37 ms was obtained and at the time of k = 5 an accuracy of 88% with a computation time of 42 ms.","PeriodicalId":365934,"journal":{"name":"Jurnal Teknik Informasi dan Komputer (Tekinkom)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknik Informasi dan Komputer (Tekinkom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37600/tekinkom.v5i1.477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Attendance is an activity that is so important and cannot be separated from a teaching and learning activity to calculate and see student attendance. In this Final Project, research on the automatic attendance system is carried out through facial recognition identification (face recognition) using a webcam as a system input, then the resulting image capture results from each image will be processed through feature extraction using the LBPH (Local Binary Pattern Histogram) method and classification with the KNN (K-Nearest Neighbor) method and the help of OpenCV library-based Python software. The research in this Final Project obtained an average accuracy value in facial recognition using LBPH (Local Binary Pattern Histogram) of 93.9%, with an average FAR value of 4.66% and an average FRR value of 1.33%. For the classification of KNN (K-Nearest Neighbor) using Euclidean Distance when k = 1 obtained an accuracy of 100% with a computation time of 34 ms, at the time of k = 3 an accuracy of 98% with a computation time of 37 ms was obtained and at the time of k = 5 an accuracy of 88% with a computation time of 42 ms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用KNN方法进行面部识别
考勤是一项非常重要的活动,不能与教学活动分开来计算和查看学生的考勤。在本次Final Project中,通过使用网络摄像头作为系统输入,对自动考勤系统进行人脸识别(face recognition)的研究,然后通过LBPH (Local Binary Pattern Histogram)方法进行特征提取,使用KNN (K-Nearest Neighbor)方法进行分类,并借助于基于OpenCV库的Python软件,对每张图像进行图像采集结果的处理。本Final Project的研究得到了LBPH (Local Binary Pattern Histogram,局部二值模式直方图)人脸识别的平均准确率为93.9%,平均FAR值为4.66%,平均FRR值为1.33%。当k = 1时,利用欧几里得距离对KNN (k - nearest Neighbor)进行分类,准确率为100%,计算时间为34 ms;当k = 3时,准确率为98%,计算时间为37 ms;当k = 5时,准确率为88%,计算时间为42 ms。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EVALUASI USABILITY PADA APLIKASI IMMERSIVE STORY TELLING SATUA I BELOG IMPLEMENTASI TEKNOLOGI VIRTUAL DALAM VISUALISASI PENGENALAN KAMPUS MENGGUNAKAN WEBVR PENGEBANGAN MEDIA INTERAKTIF BERORIENTASI HOTS (HIGHER ORDER THINGKING SKILLS) PADA MATAPELAJARAN BILOGI BERBASIS ANDROID SISTEM PENDUKUNG KEPUTUSAN PEMILIHAN OBYEK WISATA TERBAIK DI KABUPATEN SRAGEN DENGAN METODE WEIGHTED PRODUCT DATA MINING UNTUK KLASIFIKASI STATUS PANDEMI COVID 19
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1