Nonlinear modeling of a capacitive MEMS accelerometer using neural network

A. Bahadorimehr, M. Hamidon, Y. Hezarjaribi
{"title":"Nonlinear modeling of a capacitive MEMS accelerometer using neural network","authors":"A. Bahadorimehr, M. Hamidon, Y. Hezarjaribi","doi":"10.1109/IEMT.2008.5507887","DOIUrl":null,"url":null,"abstract":"This paper presents a nonlinear model for a capacitive Microelectromechanical accelerometer (MEMA). System parameters of the accelerometer are developed using the effect of cubic term of the folded-flexure spring. To solving this equation we use FEA method. The neural network (NN) uses Levenberg-Marquardt (LM) method for training the system to have more accurate response. The designed NN can identify and predict the displacement of movable mass of accelerometer. The simulation results are very promising.","PeriodicalId":151085,"journal":{"name":"2008 33rd IEEE/CPMT International Electronics Manufacturing Technology Conference (IEMT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 33rd IEEE/CPMT International Electronics Manufacturing Technology Conference (IEMT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMT.2008.5507887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a nonlinear model for a capacitive Microelectromechanical accelerometer (MEMA). System parameters of the accelerometer are developed using the effect of cubic term of the folded-flexure spring. To solving this equation we use FEA method. The neural network (NN) uses Levenberg-Marquardt (LM) method for training the system to have more accurate response. The designed NN can identify and predict the displacement of movable mass of accelerometer. The simulation results are very promising.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电容式MEMS加速度计的神经网络非线性建模
本文建立了电容式微机电加速度计的非线性模型。利用折叠柔性弹簧的三次项效应,推导了加速度计的系统参数。为了求解该方程,我们采用了有限元法。神经网络(NN)采用Levenberg-Marquardt (LM)方法对系统进行训练,以获得更准确的响应。所设计的神经网络能够识别和预测加速度计可动质量的位移。仿真结果很有希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Process development and reliability evaluation of Electrically conductive adhesives (ECA) for low temperature SMT assembly Lead-free solder ball attach improvement on FCPBGA with SOP pad finishing High efficiency 850 nm Vertical-Cavity Surface-Emitting Laser using fan-pad metallization and trench patterning A comparison study on SnAgNiCo and Sn3.8Ag0.7Cu C5 lead free solder system Pressure sensors based on MEMS, operating in harsh environments (touch-mode)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1