A new neural network structure dedicated to the control of nonlinear systems

Tsurng-Jehng Shen, F. Mora-Camino, K. Achaibou
{"title":"A new neural network structure dedicated to the control of nonlinear systems","authors":"Tsurng-Jehng Shen, F. Mora-Camino, K. Achaibou","doi":"10.1109/MWSCAS.1995.504469","DOIUrl":null,"url":null,"abstract":"Proposes a new neural network structure to design a robust controller for non-exactly known nonlinear systems. Based on input-output data, the neural network structure provides a global affine model of the controlled system which is compatible with well known nonlinear control techniques. An affine neural tracking controller is developed and applied to an inverted pendulum submitted to random perturbations. The performance of the controller and the main advantage of the proposed approach are discussed.","PeriodicalId":165081,"journal":{"name":"38th Midwest Symposium on Circuits and Systems. Proceedings","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"38th Midwest Symposium on Circuits and Systems. Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS.1995.504469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Proposes a new neural network structure to design a robust controller for non-exactly known nonlinear systems. Based on input-output data, the neural network structure provides a global affine model of the controlled system which is compatible with well known nonlinear control techniques. An affine neural tracking controller is developed and applied to an inverted pendulum submitted to random perturbations. The performance of the controller and the main advantage of the proposed approach are discussed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种用于非线性系统控制的新型神经网络结构
提出了一种新的神经网络结构来设计非完全已知非线性系统的鲁棒控制器。基于输入输出数据,神经网络结构提供了被控系统的全局仿射模型,该模型与已知的非线性控制技术兼容。提出了一种仿射神经跟踪控制器,并将其应用于受随机扰动的倒立摆。讨论了控制器的性能和所提方法的主要优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A band-pass sigma-delta modulator architecture for digital radio Forecasting epidemiological time series with backpropagation neural networks Analog blocks for high-speed oversampled A/D converters Designing efficient redundant arithmetic processors for DSP applications Using neural networks for automatic speaker recognition: a practical approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1