An Efficient RFID Tag Estimation Method Using Biased Chebyshev Inequality for Dynamic Frame Slotted ALOHA

Hazem A. Ahmed, Hamed Salah, J. Robert, A. Heuberger
{"title":"An Efficient RFID Tag Estimation Method Using Biased Chebyshev Inequality for Dynamic Frame Slotted ALOHA","authors":"Hazem A. Ahmed, Hamed Salah, J. Robert, A. Heuberger","doi":"10.1109/SMARTSYSTECH.2014.7156021","DOIUrl":null,"url":null,"abstract":"Radio Frequency Identification (RFID) is a wireless technology allowing for the automatic identification of tags (transponders). For the efficient identification in case of large tag populations, the RFID reader has to precisely estimate the number of tags in the reading area. Inaccuracies in this estimation lead to significantly increased reading times. Therefore, this paper proposes a novel tag estimation technique called biased Chebyshev inequality tag estimation method. This new method improves the existing Chebyshev inequality method by using a collision coefficient. This collision coefficient is calculated numerically using a two dimensional curve fitting approach. The proposed estimation method is compared to two common tag estimation methods in RFID systems. Simulation results of the proposed algorithm show a reading time reduction for large populations of approx. 25%.","PeriodicalId":309593,"journal":{"name":"Smart SysTech 2014; European Conference on Smart Objects, Systems and Technologies","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart SysTech 2014; European Conference on Smart Objects, Systems and Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMARTSYSTECH.2014.7156021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Radio Frequency Identification (RFID) is a wireless technology allowing for the automatic identification of tags (transponders). For the efficient identification in case of large tag populations, the RFID reader has to precisely estimate the number of tags in the reading area. Inaccuracies in this estimation lead to significantly increased reading times. Therefore, this paper proposes a novel tag estimation technique called biased Chebyshev inequality tag estimation method. This new method improves the existing Chebyshev inequality method by using a collision coefficient. This collision coefficient is calculated numerically using a two dimensional curve fitting approach. The proposed estimation method is compared to two common tag estimation methods in RFID systems. Simulation results of the proposed algorithm show a reading time reduction for large populations of approx. 25%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于有偏切比雪夫不等式的RFID标签估计方法
射频识别(RFID)是一种允许自动识别标签(应答器)的无线技术。为了在大量标签群的情况下有效识别,RFID阅读器必须精确估计读取区域内的标签数量。这种估计的不准确性会导致读取时间的显著增加。为此,本文提出了一种新的标签估计技术——有偏切比雪夫不等式标签估计方法。该方法利用碰撞系数对切比雪夫不等式方法进行了改进。该碰撞系数采用二维曲线拟合方法进行数值计算。将该估计方法与RFID系统中常用的两种标签估计方法进行了比较。仿真结果表明,该算法能够有效地减少大量近似种群的读取时间。25%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Energy self-sufficient sensor nodes for the detection of gaseous hazardous substances in case of disaster Novel Consumer Classification Scheme for Smart Grids An ML Approach for Decoding Collision Slots Development of an Algorithm to Control and Optimize the Coordinated Charging Process of a Group of Electric Vehicles Using the RFID Wristband for Automatic Identification in Manual Processes - The RFID Wristband in the Automotive Industry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1