Setup of a new form measurement system for flat and slightly curved optics with diameters up to 1.5 metres

G. Ehret, Jan Spichtinger, M. Stavridis, M. Schulz
{"title":"Setup of a new form measurement system for flat and slightly curved optics with diameters up to 1.5 metres","authors":"G. Ehret, Jan Spichtinger, M. Stavridis, M. Schulz","doi":"10.1117/12.2564912","DOIUrl":null,"url":null,"abstract":"Large optics with diameters of up to 1.5 m are being used more and more in industry and science. Flatness measurements of these optics are needed with uncertainties down to a few ten nanometres. For slightly curved specimens with radii of curvature down to 10 m uncertainties in the sub-micrometre range are required. We are currently building a new form measurement system which aims to fulfil these requirements. It will be set up in 2020 and the first measurements will be carried out in 2021. The setup can be operated with different sensor heads which use deflectometric- or interferometricbased methods. We plan, amongst other things, to use Fizeau interferometers with aperture sizes of 10 mm, 100 mm and 150 mm. The mechanical and optical setup of this new system is presented and simulation results of conventional subaperture stitching methods for this system with an aperture of 100 mm are shown. We also discuss the different measurement methods for the absolute form measurement of these optics.","PeriodicalId":422212,"journal":{"name":"Precision Optics Manufacturing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Optics Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2564912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Large optics with diameters of up to 1.5 m are being used more and more in industry and science. Flatness measurements of these optics are needed with uncertainties down to a few ten nanometres. For slightly curved specimens with radii of curvature down to 10 m uncertainties in the sub-micrometre range are required. We are currently building a new form measurement system which aims to fulfil these requirements. It will be set up in 2020 and the first measurements will be carried out in 2021. The setup can be operated with different sensor heads which use deflectometric- or interferometricbased methods. We plan, amongst other things, to use Fizeau interferometers with aperture sizes of 10 mm, 100 mm and 150 mm. The mechanical and optical setup of this new system is presented and simulation results of conventional subaperture stitching methods for this system with an aperture of 100 mm are shown. We also discuss the different measurement methods for the absolute form measurement of these optics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
为直径达1.5米的平面和微弯曲光学元件建立一种新型测量系统
直径可达1.5米的大型光学器件在工业和科学中得到越来越多的应用。需要对这些光学器件进行平面度测量,其不确定度要小到几十纳米。对于曲率半径低至10米的轻微弯曲试样,需要在亚微米范围内进行不确定度。我们目前正在建立一个新的形式测量系统,旨在满足这些要求。它将于2020年建立,第一次测量将于2021年进行。该装置可以使用不同的传感器头,使用偏转测量或干涉测量为基础的方法。除其他外,我们计划使用孔径尺寸为10毫米、100毫米和150毫米的菲索干涉仪。给出了该系统的机械和光学设置,并给出了该系统孔径为100 mm的常规子孔径拼接方法的仿真结果。我们还讨论了这些光学器件的绝对形状测量的不同测量方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast, semi-automated geometric and functional characterization of miniaturized lenses using optical coherence tomography-based systems and wavefront sensors Simulation of system transmission values for different angles of incidence Acoustic emissions in the glass polishing process: a possible approach for process monitoring Conceptual considerations for the paperless production of ophthalmic lenses Superposition of cryogenic and ultrasonic assisted machining of Zerodur
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1