The empirical likelihood approach to simulation input uncertainty

H. Lam, Huajie Qian
{"title":"The empirical likelihood approach to simulation input uncertainty","authors":"H. Lam, Huajie Qian","doi":"10.1109/WSC.2016.7822142","DOIUrl":null,"url":null,"abstract":"We study the empirical likelihood method in constructing statistically accurate confidence bounds for stochastic simulation under nonparametric input uncertainty. The approach is based on positing a pair of distributionally robust optimization, with a suitably averaged divergence constraint over the uncertain input distributions, and calibrated with a χ2-quantile to provide asymptotic coverage guarantees. We present the theory giving rise to the constraint and the calibration. We also analyze the performance of our stochastic optimization algorithm. We numerically compare our approach with existing standard methods such as the bootstrap.","PeriodicalId":367269,"journal":{"name":"2016 Winter Simulation Conference (WSC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Winter Simulation Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC.2016.7822142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We study the empirical likelihood method in constructing statistically accurate confidence bounds for stochastic simulation under nonparametric input uncertainty. The approach is based on positing a pair of distributionally robust optimization, with a suitably averaged divergence constraint over the uncertain input distributions, and calibrated with a χ2-quantile to provide asymptotic coverage guarantees. We present the theory giving rise to the constraint and the calibration. We also analyze the performance of our stochastic optimization algorithm. We numerically compare our approach with existing standard methods such as the bootstrap.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模拟输入不确定性的经验似然方法
研究了经验似然法在非参数输入不确定性的随机模拟中构造统计上准确的置信边界。该方法基于假设一对分布鲁棒优化,在不确定输入分布上具有适当的平均散度约束,并使用χ2分位数进行校准,以提供渐近覆盖保证。给出了产生约束和标定的理论。我们还分析了随机优化算法的性能。我们将我们的方法与现有的标准方法(如bootstrap)进行了数值比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enriching Simheuristics with Petri net models: Potential applications to logistics and supply chain management A ship block logistics support system based on the shipyard simulation framework Modeling & simulation's role as a service to military and homeland security decision makers Multiple comparisons with a standard using false discovery rates Lean design and analysis of a milk-run delivery system: Case study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1