Hierarchical sensor data fusion by probabilistic cue integration for robust 3D object tracking

O. Kahler, Joachim Denzler, J. Triesch
{"title":"Hierarchical sensor data fusion by probabilistic cue integration for robust 3D object tracking","authors":"O. Kahler, Joachim Denzler, J. Triesch","doi":"10.1109/IAI.2004.1300977","DOIUrl":null,"url":null,"abstract":"Sensor data fusion from multiple cameras is an important problem for machine vision systems operating in complex, natural environments. We tackle the problem of how information from different sensors can be fused in 3D object tracking. We embed an approach called democratic integration into a probabilistic framework and solve the fusion step by hierarchically fusing the information of different sensors and different information sources (cues) derived from each sensor. We compare different fusion architectures and different adaptation schemes. The experiments for 3D object tracking using three calibrated cameras show that adaptive hierarchical fusion improves the tracking robustness and accuracy compared to a flat fusion strategy.","PeriodicalId":326040,"journal":{"name":"6th IEEE Southwest Symposium on Image Analysis and Interpretation, 2004.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"6th IEEE Southwest Symposium on Image Analysis and Interpretation, 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAI.2004.1300977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Sensor data fusion from multiple cameras is an important problem for machine vision systems operating in complex, natural environments. We tackle the problem of how information from different sensors can be fused in 3D object tracking. We embed an approach called democratic integration into a probabilistic framework and solve the fusion step by hierarchically fusing the information of different sensors and different information sources (cues) derived from each sensor. We compare different fusion architectures and different adaptation schemes. The experiments for 3D object tracking using three calibrated cameras show that adaptive hierarchical fusion improves the tracking robustness and accuracy compared to a flat fusion strategy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于概率线索集成的分层传感器数据融合鲁棒三维目标跟踪
对于在复杂自然环境下运行的机器视觉系统来说,多相机传感器数据融合是一个重要问题。我们解决了如何在三维目标跟踪中融合来自不同传感器的信息的问题。我们将一种称为民主整合的方法嵌入到概率框架中,并通过分层融合不同传感器的信息和来自每个传感器的不同信息源(线索)来解决融合步骤。我们比较了不同的融合架构和不同的适应方案。在三台标定相机上进行的三维目标跟踪实验表明,自适应分层融合比平面融合策略提高了跟踪的鲁棒性和精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Color interpolation for single CCD color camera A spatially selective filter based on the undecimated wavelet transform that is robust to noise estimation error Partially observed objects localization with PCA and KPCA models Multi-resolution volumetric reconstruction using labeled regions Frequency implementation of discrete wavelet transforms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1