Music retrieval by singing and humming using information fusion

John N. Milner, D. Hsu
{"title":"Music retrieval by singing and humming using information fusion","authors":"John N. Milner, D. Hsu","doi":"10.1109/ICCI-CC.2013.6622263","DOIUrl":null,"url":null,"abstract":"We present that combinatorial fusion analysis (CFA) can improve results in a music information retrieval (MIR) task, specifically querying a database of recorded music by singing, humming, or whistling. Our experiment considers 10 scoring systems, 55 queries, and a database of 310 original artists' recordings. Through the use of spectral subtraction, we exploit the recording industry's tradition of placing the lead vocal and other prominent melodic features in the center of a stereo mix. We employ the rank/score function previously defined in other studies of CFA to analyze the behavior of scoring systems, and we use the rank/score variation to quantify the diversity of any two scoring systems. We then observe that successful 2-combinations, i.e. cases where the performance of a combination meets or exceeds the performance of its constituent scoring systems, tend to occur when each system performs relatively well and the systems are diverse.","PeriodicalId":130244,"journal":{"name":"2013 IEEE 12th International Conference on Cognitive Informatics and Cognitive Computing","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 12th International Conference on Cognitive Informatics and Cognitive Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCI-CC.2013.6622263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We present that combinatorial fusion analysis (CFA) can improve results in a music information retrieval (MIR) task, specifically querying a database of recorded music by singing, humming, or whistling. Our experiment considers 10 scoring systems, 55 queries, and a database of 310 original artists' recordings. Through the use of spectral subtraction, we exploit the recording industry's tradition of placing the lead vocal and other prominent melodic features in the center of a stereo mix. We employ the rank/score function previously defined in other studies of CFA to analyze the behavior of scoring systems, and we use the rank/score variation to quantify the diversity of any two scoring systems. We then observe that successful 2-combinations, i.e. cases where the performance of a combination meets or exceeds the performance of its constituent scoring systems, tend to occur when each system performs relatively well and the systems are diverse.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用信息融合,通过唱歌和哼唱来检索音乐
我们提出组合融合分析(CFA)可以改善音乐信息检索(MIR)任务的结果,特别是查询通过唱歌,哼唱或吹口哨录制的音乐数据库。我们的实验考虑了10个评分系统、55个查询和一个包含310位原创艺术家录音的数据库。通过使用频谱减法,我们利用唱片业的传统,将主唱和其他突出的旋律特征放在立体声混合的中心。我们采用之前在其他CFA研究中定义的等级/分数函数来分析评分系统的行为,并使用等级/分数变化来量化任意两个评分系统的多样性。然后,我们观察到成功的2-组合,即组合的表现达到或超过其组成评分系统的表现的情况,往往发生在每个系统表现相对较好并且系统多样化的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ordering: A reliable qualitative information for the alignment of sketch and metric maps Visual words sequence alignment for image classification Survey of measures for the structural dimension of ontologies An emotional regulation model with memories for virtual agents Visual words selection based on class separation measures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1