Music Feature Maps with Convolutional Neural Networks for Music Genre Classification

Christine Sénac, Thomas Pellegrini, Florian Mouret, J. Pinquier
{"title":"Music Feature Maps with Convolutional Neural Networks for Music Genre Classification","authors":"Christine Sénac, Thomas Pellegrini, Florian Mouret, J. Pinquier","doi":"10.1145/3095713.3095733","DOIUrl":null,"url":null,"abstract":"Nowadays, deep learning is more and more used for Music Genre Classification: particularly Convolutional Neural Networks (CNN) taking as entry a spectrogram considered as an image on which are sought different types of structure. But, facing the criticism relating to the difficulty in understanding the underlying relationships that neural networks learn in presence of a spectrogram, we propose to use, as entries of a CNN, a small set of eight music features chosen along three main music dimensions: dynamics, timbre and tonality. With CNNs trained in such a way that filter dimensions are interpretable in time and frequency, results show that only eight music features are more efficient than 513 frequency bins of a spectrogram and that late score fusion between systems based on both feature types reaches 91% accuracy on the GTZAN database.","PeriodicalId":310224,"journal":{"name":"Proceedings of the 15th International Workshop on Content-Based Multimedia Indexing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 15th International Workshop on Content-Based Multimedia Indexing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3095713.3095733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51

Abstract

Nowadays, deep learning is more and more used for Music Genre Classification: particularly Convolutional Neural Networks (CNN) taking as entry a spectrogram considered as an image on which are sought different types of structure. But, facing the criticism relating to the difficulty in understanding the underlying relationships that neural networks learn in presence of a spectrogram, we propose to use, as entries of a CNN, a small set of eight music features chosen along three main music dimensions: dynamics, timbre and tonality. With CNNs trained in such a way that filter dimensions are interpretable in time and frequency, results show that only eight music features are more efficient than 513 frequency bins of a spectrogram and that late score fusion between systems based on both feature types reaches 91% accuracy on the GTZAN database.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于卷积神经网络的音乐类型分类特征映射
如今,深度学习越来越多地用于音乐类型分类,尤其是卷积神经网络(CNN),它将一个频谱图作为图像作为入口,在其上寻找不同类型的结构。但是,面对与理解神经网络在谱图中学习的潜在关系方面的困难有关的批评,我们建议使用,作为CNN的条目,根据三个主要音乐维度选择的八个音乐特征的一小组:动态,音色和调性。在cnn的训练中,滤波器的维度在时间和频率上都是可解释的,结果表明,只有8个音乐特征比513个谱图的频率桶更有效,并且基于两种特征类型的系统之间的后期乐谱融合在GTZAN数据库上达到了91%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tag Propagation Approaches within Speaking Face Graphs for Multimodal Person Discovery A free Web API for single and multi-document summarization Visualizing weakly-Annotated Multi-label Mayan Inscriptions with Supervised t-SNE Prediction of User Demographics from Music Listening Habits Detecting adversarial example attacks to deep neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1