A Study on Hydrate Inhibition of Marginal Gas Field Development

Hualei Yi
{"title":"A Study on Hydrate Inhibition of Marginal Gas Field Development","authors":"Hualei Yi","doi":"10.1115/omae2020-18348","DOIUrl":null,"url":null,"abstract":"\n In the marginal gas field development engineering, considering the low gas production with complex reservoir condition, it is difficult to develop independently because of the low economic efficiency. It is usually developed by relying on an existing offshore platform or facility nearby, in which hydrate inhibition is an important issue, and in order to inhibit hydrate formation in the subsea pipeline, hydrate inhibition method should be studied. Based on certain marginal gas field development project in South China Sea, which relies on nearby DPP platform, the paper studies methanol and MEG as inhibitor and application of double-layer insulated subsea pipeline. Finally by technical and economic comparisons, for the first time double-layer insulated pipeline is selected as the hydrate inhibition method to meet requirements of both relying on DPP and achieving better economic benefits, which is expected to provide reference for similar marginal gas field development.","PeriodicalId":240325,"journal":{"name":"Volume 4: Pipelines, Risers, and Subsea Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 4: Pipelines, Risers, and Subsea Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/omae2020-18348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the marginal gas field development engineering, considering the low gas production with complex reservoir condition, it is difficult to develop independently because of the low economic efficiency. It is usually developed by relying on an existing offshore platform or facility nearby, in which hydrate inhibition is an important issue, and in order to inhibit hydrate formation in the subsea pipeline, hydrate inhibition method should be studied. Based on certain marginal gas field development project in South China Sea, which relies on nearby DPP platform, the paper studies methanol and MEG as inhibitor and application of double-layer insulated subsea pipeline. Finally by technical and economic comparisons, for the first time double-layer insulated pipeline is selected as the hydrate inhibition method to meet requirements of both relying on DPP and achieving better economic benefits, which is expected to provide reference for similar marginal gas field development.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
边际气田开发水合物抑制作用研究
在边际气田开发工程中,考虑到产气量低、储层条件复杂,经济效益低,难以独立开发。它通常依靠附近已有的海上平台或设施进行开发,其中水合物抑制是一个重要问题,为了抑制海底管道中水合物的形成,需要研究水合物抑制方法。本文以南海某边际气田开发项目为背景,依托附近的DPP平台,研究甲醇和MEG作为抑制剂及其在海底双层绝热管道中的应用。最后通过技术经济比较,首次选择双层保温管道作为水合物抑制方式,既满足了依赖DPP的要求,又取得了较好的经济效益,有望为类似边际气田开发提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Integrity Monitoring of Offshore Arctic Pipelines Investigation of Near-Field Temperature Distribution in Buried Dense Phase CO2 Pipelines On the Plastic Bending Responses of Dented Lined Pipe Implementation of a Method for Free-Spanning Pipeline Analysis Simplified Stochastic Modelling of the Force on a Pipe Bend Due to Two-Phase Slug Flow
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1