Clustering web pages with expanded tags

Li Zhao, Lianhe Yang, Yinghuang Liang
{"title":"Clustering web pages with expanded tags","authors":"Li Zhao, Lianhe Yang, Yinghuang Liang","doi":"10.1109/ICCIAUTOM.2011.6183985","DOIUrl":null,"url":null,"abstract":"Social annotations e.g. tags are good descriptors of web page semantics, which have large potential for web document clustering. However, most web pages have few tags. The sparsity seriously affects the clustering performance. To overcome the problem, we incorporate user-related tag context, a specially constructed tag set, to improve the topic representation and estimation for documents. Experimental results demonstrate the nice effect of tag context on addressing the sparsity problem. Compared to clustering based on non-expanded tags, our approach achieves a statistically significant increase of 26.5% to 47.4% on F1 score.","PeriodicalId":177039,"journal":{"name":"2011 2nd International Conference on Control, Instrumentation and Automation (ICCIA)","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 2nd International Conference on Control, Instrumentation and Automation (ICCIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIAUTOM.2011.6183985","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Social annotations e.g. tags are good descriptors of web page semantics, which have large potential for web document clustering. However, most web pages have few tags. The sparsity seriously affects the clustering performance. To overcome the problem, we incorporate user-related tag context, a specially constructed tag set, to improve the topic representation and estimation for documents. Experimental results demonstrate the nice effect of tag context on addressing the sparsity problem. Compared to clustering based on non-expanded tags, our approach achieves a statistically significant increase of 26.5% to 47.4% on F1 score.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
聚集带有扩展标签的网页
社交注释(如标签)是网页语义的良好描述符,在web文档聚类方面具有很大的潜力。然而,大多数网页只有很少的标签。稀疏性严重影响集群性能。为了克服这个问题,我们结合了用户相关的标签上下文,一个特殊构造的标签集,以改进文档的主题表示和估计。实验结果证明了标签上下文在解决稀疏性问题上的良好效果。与基于未扩展标签的聚类相比,我们的方法在F1得分上实现了26.5%到47.4%的统计学显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A dynamic scheduling parallel test system with CVI A research of algorithm based on probability weighted fuzzy association rules Design of assembly line of diesel engine factory based on RFID technology Application of genetic algorithm in computer aided design A new method of parameters determined in image recognition by PCNN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1