M. Massaoudi, H. Abu-Rub, S. Refaat, I. Chihi, F. Oueslati
{"title":"An Effective Ensemble Learning approach-Based Grid Stability Assessment and Classification","authors":"M. Massaoudi, H. Abu-Rub, S. Refaat, I. Chihi, F. Oueslati","doi":"10.1109/kpec51835.2021.9446197","DOIUrl":null,"url":null,"abstract":"This article proposes an accurate Stacking Ensemble Classifier (SEC) for decentral Smart Grid control Stability Prediction. The proposed SEC consists of stacking two base classifiers; specifically, eXtreme Gradient Boosting machine (XGBoost) and Categorical boosting (Catboost), and one meta-classier, Light Gradient Boosting Machine (LGBM). The proposed technique shows an excellent ability to classify the grid instabilities using a supervised learning approach accurately. Extensive experiments have been conducted, demonstrating the superiority of the proposed SEC model over multiple benchmarks. In summary, this paper's main contributions consist of 1) proposing a new model-based ensemble learning 2) tailoring an efficient data-driven technique for grid stability detection and classification. Numerical results are to validate the proposed model's high effectiveness.","PeriodicalId":392538,"journal":{"name":"2021 IEEE Kansas Power and Energy Conference (KPEC)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Kansas Power and Energy Conference (KPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/kpec51835.2021.9446197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
This article proposes an accurate Stacking Ensemble Classifier (SEC) for decentral Smart Grid control Stability Prediction. The proposed SEC consists of stacking two base classifiers; specifically, eXtreme Gradient Boosting machine (XGBoost) and Categorical boosting (Catboost), and one meta-classier, Light Gradient Boosting Machine (LGBM). The proposed technique shows an excellent ability to classify the grid instabilities using a supervised learning approach accurately. Extensive experiments have been conducted, demonstrating the superiority of the proposed SEC model over multiple benchmarks. In summary, this paper's main contributions consist of 1) proposing a new model-based ensemble learning 2) tailoring an efficient data-driven technique for grid stability detection and classification. Numerical results are to validate the proposed model's high effectiveness.