Daniel Medina, F. Hoffmann, F. Rossetto, C. Rokitansky
{"title":"Routing in the Airborne Internet","authors":"Daniel Medina, F. Hoffmann, F. Rossetto, C. Rokitansky","doi":"10.1109/ICNSURV.2010.5503320","DOIUrl":null,"url":null,"abstract":"The Airborne Internet is envisioned to be a large scale multihop wireless mesh network of civil aviation aircraft connected via long range highly directional air-to-air radio links. We propose a novel geographic load share routing metric to mitigate congestion in this network, taking into account the underlying link scheduling constraints with directional antennas. When forwarding packets for a given destination, a node considers not one but a set of next hop candidates, and spreads traffic among them based on queue dynamics. Our simulations show that introducing this flexibility in the routing function can greatly increase a node's ability to satisfy its bandwidth demands during link scheduling, yielding significant performance improvements in terms of network throughput and average packet delay. The ability to exploit this flexibility depends on the spatial reuse of the underlying network. For the simulated scenario, an increase in network throughput of 200% on average is shown, compared to a state-of-the-art geographic routing algorithm.","PeriodicalId":345677,"journal":{"name":"2010 Integrated Communications, Navigation, and Surveillance Conference Proceedings","volume":"172 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Integrated Communications, Navigation, and Surveillance Conference Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNSURV.2010.5503320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24
Abstract
The Airborne Internet is envisioned to be a large scale multihop wireless mesh network of civil aviation aircraft connected via long range highly directional air-to-air radio links. We propose a novel geographic load share routing metric to mitigate congestion in this network, taking into account the underlying link scheduling constraints with directional antennas. When forwarding packets for a given destination, a node considers not one but a set of next hop candidates, and spreads traffic among them based on queue dynamics. Our simulations show that introducing this flexibility in the routing function can greatly increase a node's ability to satisfy its bandwidth demands during link scheduling, yielding significant performance improvements in terms of network throughput and average packet delay. The ability to exploit this flexibility depends on the spatial reuse of the underlying network. For the simulated scenario, an increase in network throughput of 200% on average is shown, compared to a state-of-the-art geographic routing algorithm.