Michael LeBeane, Shuang Song, Reena Panda, Jee Ho Ryoo, L. John
{"title":"Data partitioning strategies for graph workloads on heterogeneous clusters","authors":"Michael LeBeane, Shuang Song, Reena Panda, Jee Ho Ryoo, L. John","doi":"10.1145/2807591.2807632","DOIUrl":null,"url":null,"abstract":"Large scale graph analytics are an important class of problem in the modern data center. However, while data centers are trending towards a large number of heterogeneous processing nodes, graph analytics frameworks still operate under the assumption of uniform compute resources. In this paper, we develop heterogeneity-aware data ingress strategies for graph analytics workloads using the popular PowerGraph framework. We illustrate how simple estimates of relative node computational throughput can guide heterogeneity-aware data partitioning algorithms to provide balanced graph cutting decisions. Our work enhances five online data ingress strategies from a variety of sources to optimize application execution for throughput differences in heterogeneous data centers. The proposed partitioning algorithms improve the runtime of several popular machine learning and data mining applications by as much as a 65% and on average by 32% as compared to the default, balanced partitioning approaches.","PeriodicalId":117494,"journal":{"name":"SC15: International Conference for High Performance Computing, Networking, Storage and Analysis","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SC15: International Conference for High Performance Computing, Networking, Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2807591.2807632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39
Abstract
Large scale graph analytics are an important class of problem in the modern data center. However, while data centers are trending towards a large number of heterogeneous processing nodes, graph analytics frameworks still operate under the assumption of uniform compute resources. In this paper, we develop heterogeneity-aware data ingress strategies for graph analytics workloads using the popular PowerGraph framework. We illustrate how simple estimates of relative node computational throughput can guide heterogeneity-aware data partitioning algorithms to provide balanced graph cutting decisions. Our work enhances five online data ingress strategies from a variety of sources to optimize application execution for throughput differences in heterogeneous data centers. The proposed partitioning algorithms improve the runtime of several popular machine learning and data mining applications by as much as a 65% and on average by 32% as compared to the default, balanced partitioning approaches.