Data partitioning strategies for graph workloads on heterogeneous clusters

Michael LeBeane, Shuang Song, Reena Panda, Jee Ho Ryoo, L. John
{"title":"Data partitioning strategies for graph workloads on heterogeneous clusters","authors":"Michael LeBeane, Shuang Song, Reena Panda, Jee Ho Ryoo, L. John","doi":"10.1145/2807591.2807632","DOIUrl":null,"url":null,"abstract":"Large scale graph analytics are an important class of problem in the modern data center. However, while data centers are trending towards a large number of heterogeneous processing nodes, graph analytics frameworks still operate under the assumption of uniform compute resources. In this paper, we develop heterogeneity-aware data ingress strategies for graph analytics workloads using the popular PowerGraph framework. We illustrate how simple estimates of relative node computational throughput can guide heterogeneity-aware data partitioning algorithms to provide balanced graph cutting decisions. Our work enhances five online data ingress strategies from a variety of sources to optimize application execution for throughput differences in heterogeneous data centers. The proposed partitioning algorithms improve the runtime of several popular machine learning and data mining applications by as much as a 65% and on average by 32% as compared to the default, balanced partitioning approaches.","PeriodicalId":117494,"journal":{"name":"SC15: International Conference for High Performance Computing, Networking, Storage and Analysis","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SC15: International Conference for High Performance Computing, Networking, Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2807591.2807632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

Abstract

Large scale graph analytics are an important class of problem in the modern data center. However, while data centers are trending towards a large number of heterogeneous processing nodes, graph analytics frameworks still operate under the assumption of uniform compute resources. In this paper, we develop heterogeneity-aware data ingress strategies for graph analytics workloads using the popular PowerGraph framework. We illustrate how simple estimates of relative node computational throughput can guide heterogeneity-aware data partitioning algorithms to provide balanced graph cutting decisions. Our work enhances five online data ingress strategies from a variety of sources to optimize application execution for throughput differences in heterogeneous data centers. The proposed partitioning algorithms improve the runtime of several popular machine learning and data mining applications by as much as a 65% and on average by 32% as compared to the default, balanced partitioning approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
异构集群上图形工作负载的数据分区策略
大规模图分析是现代数据中心的一类重要问题。然而,在数据中心趋向于大量异构处理节点的同时,图分析框架仍然在统一计算资源的假设下运行。在本文中,我们使用流行的PowerGraph框架为图形分析工作负载开发了异构感知数据入口策略。我们说明了相对节点计算吞吐量的简单估计如何指导异构感知数据划分算法提供平衡的图切割决策。我们的工作增强了来自各种来源的五种在线数据入口策略,以优化异构数据中心中吞吐量差异的应用程序执行。与默认的均衡分区方法相比,所提出的分区算法将几种流行的机器学习和数据挖掘应用程序的运行时提高了65%,平均提高了32%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal scheduling of in-situ analysis for large-scale scientific simulations Monetary cost optimizations for MPI-based HPC applications on Amazon clouds: checkpoints and replicated execution IOrchestra: supporting high-performance data-intensive applications in the cloud via collaborative virtualization An input-adaptive and in-place approach to dense tensor-times-matrix multiply Scalable sparse tensor decompositions in distributed memory systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1