Feature extraction for multimodal biometric and study of fusion using Gaussian mixture model

S. Vivek, J. Aravinth, S. Valarmathy
{"title":"Feature extraction for multimodal biometric and study of fusion using Gaussian mixture model","authors":"S. Vivek, J. Aravinth, S. Valarmathy","doi":"10.1109/ICPRIME.2012.6208377","DOIUrl":null,"url":null,"abstract":"Biometrics consists of methods for uniquely recognizing humans based upon one or more intrinsic physical or behavioral traits. This paper describes the feature extraction techniques for three modalities viz. fingerprint, iris and face. The extracted information from each modality is stored as a template. The information are fused at the match score level using a density based score level fusion, GMM followed by the Likelihood ratio test. GMM parameters are estimated from training data using the iterative Expectation-Maximization (EM) algorithm.","PeriodicalId":148511,"journal":{"name":"International Conference on Pattern Recognition, Informatics and Medical Engineering (PRIME-2012)","volume":"22 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Pattern Recognition, Informatics and Medical Engineering (PRIME-2012)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPRIME.2012.6208377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Biometrics consists of methods for uniquely recognizing humans based upon one or more intrinsic physical or behavioral traits. This paper describes the feature extraction techniques for three modalities viz. fingerprint, iris and face. The extracted information from each modality is stored as a template. The information are fused at the match score level using a density based score level fusion, GMM followed by the Likelihood ratio test. GMM parameters are estimated from training data using the iterative Expectation-Maximization (EM) algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多模态生物特征提取及高斯混合模型融合研究
生物计量学包括基于一个或多个内在的身体或行为特征来唯一识别人类的方法。本文介绍了指纹、虹膜和人脸三种形态的特征提取技术。从每个模态提取的信息存储为模板。使用基于密度的分数水平融合,GMM然后是似然比检验,在匹配分数水平上融合信息。利用迭代期望最大化(EM)算法从训练数据中估计GMM参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An optimized cluster based approach for multi-source multicast routing protocol in mobile ad hoc networks with differential evolution Increasing cluster uniqueness in Fuzzy C-Means through affinity measure Rule extraction from neural networks — A comparative study Text extraction from digital English comic image using two blobs extraction method A novel approach for Kannada text extraction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1