Prioritizing Corners in OoD Detectors via Symbolic String Manipulation

Chih-Hong Cheng, Changshun Wu, Emmanouil Seferis, S. Bensalem
{"title":"Prioritizing Corners in OoD Detectors via Symbolic String Manipulation","authors":"Chih-Hong Cheng, Changshun Wu, Emmanouil Seferis, S. Bensalem","doi":"10.48550/arXiv.2205.07736","DOIUrl":null,"url":null,"abstract":". For safety assurance of deep neural networks (DNNs), out-of-distribution (OoD) monitoring techniques are essential as they filter spurious input that is distant from the training dataset. This paper stud-ies the problem of systematically testing OoD monitors to avoid cases where an input data point is tested as in-distribution by the monitor, but the DNN produces spurious output predictions. We consider the def-inition of “in-distribution” characterized in the feature space by a union of hyperrectangles learned from the training dataset. Thus the testing is reduced to finding corners in hyperrectangles distant from the available training data in the feature space. Concretely, we encode the abstract lo-cation of every data point as a finite-length binary string, and the union of all binary strings is stored compactly using binary decision diagrams (BDDs). We demonstrate how to use BDDs to symbolically extract corners distant from all data points within the training set. Apart from test case generation, we explain how to use the proposed corners to fine-tune the DNN to ensure that it does not predict overly confidently. The result is evaluated over examples such as number and traffic sign recognition.","PeriodicalId":335085,"journal":{"name":"Automated Technology for Verification and Analysis","volume":"146 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automated Technology for Verification and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2205.07736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

. For safety assurance of deep neural networks (DNNs), out-of-distribution (OoD) monitoring techniques are essential as they filter spurious input that is distant from the training dataset. This paper stud-ies the problem of systematically testing OoD monitors to avoid cases where an input data point is tested as in-distribution by the monitor, but the DNN produces spurious output predictions. We consider the def-inition of “in-distribution” characterized in the feature space by a union of hyperrectangles learned from the training dataset. Thus the testing is reduced to finding corners in hyperrectangles distant from the available training data in the feature space. Concretely, we encode the abstract lo-cation of every data point as a finite-length binary string, and the union of all binary strings is stored compactly using binary decision diagrams (BDDs). We demonstrate how to use BDDs to symbolically extract corners distant from all data points within the training set. Apart from test case generation, we explain how to use the proposed corners to fine-tune the DNN to ensure that it does not predict overly confidently. The result is evaluated over examples such as number and traffic sign recognition.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过符号字符串操作确定OoD检测器拐角的优先级
。为了保证深度神经网络(dnn)的安全性,分布外(OoD)监测技术是必不可少的,因为它们可以过滤远离训练数据集的虚假输入。本文研究了系统测试OoD监视器的问题,以避免监视器测试输入数据点作为分布,但DNN产生虚假输出预测的情况。我们考虑通过从训练数据集中学习的超矩形的并集在特征空间中表征的“分布内”的定义。因此,测试被简化为在距离特征空间中可用训练数据的超矩形中寻找角点。具体来说,我们将每个数据点的抽象位置编码为有限长度的二进制字符串,并使用二进制决策图(binary decision diagrams, bdd)紧凑地存储所有二进制字符串的并集。我们演示了如何使用bdd象征性地提取远离训练集中所有数据点的角点。除了生成测试用例之外,我们还解释了如何使用建议的角来微调DNN,以确保它不会过于自信地预测。结果通过数字和交通标志识别等例子进行评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast Equivalence Checking of Quantum Circuits of Clifford Gates An Automata-Theoretic Approach to Synthesizing Binarized Neural Networks Syntactic vs Semantic Linear Abstraction and Refinement of Neural Networks Synthesis of Distributed Protocols by Enumeration Modulo Isomorphisms Minimally Comparing Relational Abstract Domains
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1