Sukhoon Oh, C. A. Roopnariane, M. Tofighi, C. Collins
{"title":"MRI-based temperature and SAR mapping with a new dual-coil solenoid/birdcage heating/measurement system","authors":"Sukhoon Oh, C. A. Roopnariane, M. Tofighi, C. Collins","doi":"10.1109/RWS.2010.5434270","DOIUrl":null,"url":null,"abstract":"We describe an MRI-based method for mapping temperature and specific absorption rate (SAR) using a solenoid coil and a birdcage coil for heating and imaging of a weakly conductive dielectric sample, respectively. The accuracy and the quality of SAR/temperature mapping are enhanced by separating the heating and imaging RF coils. 50 W of RF power is applied to the solenoid coil to heat the conductive agar-gel phantom for 120 sec. Maps of temperature increase were acquired with an MRI-based method. The MR-based measurements were in good agreement with fiber optic measurements. Finally, the dual-coil heating system was simulated using the finite difference time domain (FDTD) method. The distribution of numerically-calculated and experimentally-acquired SAR were also in good agreement.","PeriodicalId":334671,"journal":{"name":"2010 IEEE Radio and Wireless Symposium (RWS)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Radio and Wireless Symposium (RWS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RWS.2010.5434270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
We describe an MRI-based method for mapping temperature and specific absorption rate (SAR) using a solenoid coil and a birdcage coil for heating and imaging of a weakly conductive dielectric sample, respectively. The accuracy and the quality of SAR/temperature mapping are enhanced by separating the heating and imaging RF coils. 50 W of RF power is applied to the solenoid coil to heat the conductive agar-gel phantom for 120 sec. Maps of temperature increase were acquired with an MRI-based method. The MR-based measurements were in good agreement with fiber optic measurements. Finally, the dual-coil heating system was simulated using the finite difference time domain (FDTD) method. The distribution of numerically-calculated and experimentally-acquired SAR were also in good agreement.