Mutual Constraint Learning for Weakly Supervised Object Detection

Yongsheng Liu, Wenyu Chen, S. H. Mahmud, Hong Qu, Kebin Miao, Feng Wei, Ziliang Zhang
{"title":"Mutual Constraint Learning for Weakly Supervised Object Detection","authors":"Yongsheng Liu, Wenyu Chen, S. H. Mahmud, Hong Qu, Kebin Miao, Feng Wei, Ziliang Zhang","doi":"10.1109/ISKE47853.2019.9170207","DOIUrl":null,"url":null,"abstract":"The abundance of image-level labels and the lack of large scale bounding boxes detailed annotations promotes the expansion of Weakly-Supervised techniques for Object Detection (WSOD). In this work, we propose a novel mutual constraint learning for convolutional neural networks applied to detect bounding boxes only with global image-level supervision. The essence of our architecture is two new differentiable modules, Determination Network, and Parameterised Spatial Division, which explicitly allows the spatial division of the feature map within the network. These learnable modules give neural networks the ability to constructively generate shadow activation maps, dependent on the class activation maps. To demonstrate the effectiveness of our model for WSOD, we conduct extensive experiments on the multi-MNIST dataset. Experimental results show that mutual constraint learning can (i) help improve the accuracy of multi-category tasks, (ii) implement in an end-to-end way only with the image-level annotations, and (iii) output accurate bounding box labels, thereby achieving object detection.","PeriodicalId":399084,"journal":{"name":"2019 IEEE 14th International Conference on Intelligent Systems and Knowledge Engineering (ISKE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 14th International Conference on Intelligent Systems and Knowledge Engineering (ISKE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISKE47853.2019.9170207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The abundance of image-level labels and the lack of large scale bounding boxes detailed annotations promotes the expansion of Weakly-Supervised techniques for Object Detection (WSOD). In this work, we propose a novel mutual constraint learning for convolutional neural networks applied to detect bounding boxes only with global image-level supervision. The essence of our architecture is two new differentiable modules, Determination Network, and Parameterised Spatial Division, which explicitly allows the spatial division of the feature map within the network. These learnable modules give neural networks the ability to constructively generate shadow activation maps, dependent on the class activation maps. To demonstrate the effectiveness of our model for WSOD, we conduct extensive experiments on the multi-MNIST dataset. Experimental results show that mutual constraint learning can (i) help improve the accuracy of multi-category tasks, (ii) implement in an end-to-end way only with the image-level annotations, and (iii) output accurate bounding box labels, thereby achieving object detection.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
弱监督目标检测的相互约束学习
图像级标签的丰富和大规模边界框详细注释的缺乏促进了弱监督目标检测技术(WSOD)的发展。在这项工作中,我们提出了一种新的卷积神经网络相互约束学习方法,用于仅在全局图像级监督下检测边界盒。我们的架构的本质是两个新的可微分模块,确定网络和参数化空间划分,这明确地允许网络内特征映射的空间划分。这些可学习的模块使神经网络能够根据类激活图建设性地生成阴影激活图。为了证明我们的模型对WSOD的有效性,我们在多mnist数据集上进行了大量的实验。实验结果表明,相互约束学习可以(i)提高多类别任务的准确率,(ii)仅使用图像级标注实现端到端的实现,(iii)输出准确的边界框标签,从而实现目标检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Incremental Learning for Transductive SVMs ISKE 2019 Table of Contents Consensus: The Minimum Cost Model based Robust Optimization A Learned Clause Deletion Strategy Based on Distance Ratio Effects of Real Estate Regulation Policy of Beijing Based on Discrete Dependent Variables Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1