Two-stage Human Activity Recognition on Microcontrollers with Decision Trees and CNNs

Francesco Daghero, D. J. Pagliari, M. Poncino
{"title":"Two-stage Human Activity Recognition on Microcontrollers with Decision Trees and CNNs","authors":"Francesco Daghero, D. J. Pagliari, M. Poncino","doi":"10.48550/arXiv.2206.07652","DOIUrl":null,"url":null,"abstract":"Human Activity Recognition (HAR) has become an increasingly popular task for embedded devices such as smartwatches. Most HAR systems for ultra-low power devices are based on classic Machine Learning (ML) models, whereas Deep Learning (DL), although reaching state-of-the-art accuracy, is less popular due to its high energy consumption, which poses a significant challenge for battery-operated and resource-constrained devices. In this work, we bridge the gap between on-device HAR and DL thanks to a hierarchical architecture composed of a decision tree (DT) and a one dimensional Convolutional Neural Network (ID CNN). The two classifiers operate in a cascaded fashion on two different sub-tasks: the DT classifies only the easiest activities, while the CNN deals with more complex ones. With experiments on a state-of-the-art dataset and targeting a single-core RISC-V MCU, we show that this approach allows to save up to 67.7% energy w.r.t. a “stand-alone” DL architecture at iso-accuracy. Additionally, the two-stage system either introduces a negligible memory overhead (up to 200 B) or on the contrary, reduces the total memory occupation.","PeriodicalId":142196,"journal":{"name":"2022 17th Conference on Ph.D Research in Microelectronics and Electronics (PRIME)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 17th Conference on Ph.D Research in Microelectronics and Electronics (PRIME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2206.07652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Human Activity Recognition (HAR) has become an increasingly popular task for embedded devices such as smartwatches. Most HAR systems for ultra-low power devices are based on classic Machine Learning (ML) models, whereas Deep Learning (DL), although reaching state-of-the-art accuracy, is less popular due to its high energy consumption, which poses a significant challenge for battery-operated and resource-constrained devices. In this work, we bridge the gap between on-device HAR and DL thanks to a hierarchical architecture composed of a decision tree (DT) and a one dimensional Convolutional Neural Network (ID CNN). The two classifiers operate in a cascaded fashion on two different sub-tasks: the DT classifies only the easiest activities, while the CNN deals with more complex ones. With experiments on a state-of-the-art dataset and targeting a single-core RISC-V MCU, we show that this approach allows to save up to 67.7% energy w.r.t. a “stand-alone” DL architecture at iso-accuracy. Additionally, the two-stage system either introduces a negligible memory overhead (up to 200 B) or on the contrary, reduces the total memory occupation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于决策树和cnn的微控制器两阶段人体活动识别
人类活动识别(HAR)已经成为智能手表等嵌入式设备越来越受欢迎的任务。大多数用于超低功耗设备的HAR系统都基于经典的机器学习(ML)模型,而深度学习(DL)虽然达到了最先进的精度,但由于其高能耗而不太受欢迎,这对电池供电和资源受限的设备构成了重大挑战。在这项工作中,我们通过由决策树(DT)和一维卷积神经网络(ID CNN)组成的分层体系结构弥合了设备上HAR和DL之间的差距。这两个分类器以级联的方式在两个不同的子任务上运行:DT只分类最简单的活动,而CNN处理更复杂的活动。通过在最先进的数据集上进行实验,并针对单核RISC-V MCU,我们表明这种方法可以在等精度的“独立”DL架构下节省高达67.7%的能量。此外,两阶段系统要么引入了可以忽略不计的内存开销(最多200b),要么相反,减少了总内存占用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Using Formal Methods to Evaluate Hardware Reliability in the Presence of Soft Errors Leaky Integrate-and-Fire Neuron with a Refractory Period Mechanism for Invariant Spikes Phase-change memory cells characterization in an analog in-memory computing perspective Analysis of Current-Reuse and Split-Voltage Topology for Biomedical Amplifier Arrays Influence of Amplitude and Phase Imbalance on a Y-band Bootstrapped Frequency Doubler using 130-nm SiGe Technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1