Heterogeneous Computing for Markov Models in Big Data

M. Malita, G. Popescu, G. Stefan
{"title":"Heterogeneous Computing for Markov Models in Big Data","authors":"M. Malita, G. Popescu, G. Stefan","doi":"10.1109/CSCI49370.2019.00279","DOIUrl":null,"url":null,"abstract":"Many Big Data problems, Markov Model related included, are solved using heterogenous systems: host + parallel programmable accelerator. The current solutions for the accelerator part - for example, GPU used as GPGPU - provide limited accelerations due to some architectural constraints. The paper introduces the use of a programmable parallel accelerator able to perform efficient vector and matrix operations avoiding the limitations of the current systems designed using \"of-theshelf\" solutions. Our main result is an architecture whose actual performance is a much higher percentage from its peak performance than those of the consecrated accelerators. The performance improvements we offer come from the following two features: the addition of a reduction network at the output of a linear array of cells and an appropriate use of a serial register distributed along the same linear array of cells. Thus, for a n-state Markov Model, instead of a solution with the size in O(n2) and an acceleration in O(n2=logn), we offer an accelerator with the size in O(n) and the acceleration in O(n).","PeriodicalId":103662,"journal":{"name":"2019 International Conference on Computational Science and Computational Intelligence (CSCI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Computational Science and Computational Intelligence (CSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSCI49370.2019.00279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Many Big Data problems, Markov Model related included, are solved using heterogenous systems: host + parallel programmable accelerator. The current solutions for the accelerator part - for example, GPU used as GPGPU - provide limited accelerations due to some architectural constraints. The paper introduces the use of a programmable parallel accelerator able to perform efficient vector and matrix operations avoiding the limitations of the current systems designed using "of-theshelf" solutions. Our main result is an architecture whose actual performance is a much higher percentage from its peak performance than those of the consecrated accelerators. The performance improvements we offer come from the following two features: the addition of a reduction network at the output of a linear array of cells and an appropriate use of a serial register distributed along the same linear array of cells. Thus, for a n-state Markov Model, instead of a solution with the size in O(n2) and an acceleration in O(n2=logn), we offer an accelerator with the size in O(n) and the acceleration in O(n).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大数据中马尔可夫模型的异构计算
许多大数据问题,包括与马尔可夫模型相关的问题,都是使用异构系统来解决的:主机+并行可编程加速器。目前对于加速部分的解决方案——例如,GPU作为GPGPU使用——由于一些架构上的限制,提供有限的加速。本文介绍了一种可编程并行加速器的使用,该加速器能够执行有效的矢量和矩阵运算,避免了当前使用“现成”解决方案设计的系统的局限性。我们的主要结果是一个架构,其实际性能比其峰值性能高得多,而不是那些专用加速器。我们提供的性能改进来自以下两个特征:在线性单元阵列的输出处增加了一个缩减网络,并适当使用了沿相同线性单元阵列分布的串行寄存器。因此,对于n态马尔可夫模型,我们提供了一个大小为O(n2)和加速度为O(n2=logn)的加速器,而不是大小为O(n)和加速度为O(n)的加速器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Temperature Prediction Based on Long Short Term Memory Networks Extending a Soft-Core RISC-V Processor to Accelerate CNN Inference Uncovering Los Angeles Tourists' Patterns Using Geospatial Analysis and Supervised Machine Learning with Random Forest Predictors A Framework for Leveraging Business Intelligence to Manage Transactional Data Flows between Private Healthcare Providers and Medical Aid Administrators Feasibility Study of a Consumer Multi-Sensory Wristband to Monitor Sleep Disorder
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1