A Piezoelectric Flexible Insole System for Gait Monitoring for the Internet of Health Things

Junliang Chen, Yanning Dai, Shuo Gao
{"title":"A Piezoelectric Flexible Insole System for Gait Monitoring for the Internet of Health Things","authors":"Junliang Chen, Yanning Dai, Shuo Gao","doi":"10.1109/FLEPS49123.2020.9239591","DOIUrl":null,"url":null,"abstract":"Gait analysis is important in the field of healthcare, due to its close relationship to chronic diseases. With the development of the Internet of Health Things (IoHT), long-term gait monitoring and corresponding analysis can be performed remotely, reducing a patient’s time and traffic cost, while providing doctors more valuable gait information. In this paper, we present a piezoelectric insole gait monitoring system and its use in an IoHT architecture. Through the experimental results, the high detection sensitivity of 54 mN and responsivity of 163 mV/N are achieved, thereby satisfying the need for analyzing various diseases. Furthermore, the assembled system can continuously work for 16 hours, indicating its successful utilization when long-term gait monitoring is required. The presented work provides a feasible means for real-time, long-term, and accurate gait monitoring, prompting the development of gait analysis in the IoHT.","PeriodicalId":101496,"journal":{"name":"2020 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FLEPS49123.2020.9239591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Gait analysis is important in the field of healthcare, due to its close relationship to chronic diseases. With the development of the Internet of Health Things (IoHT), long-term gait monitoring and corresponding analysis can be performed remotely, reducing a patient’s time and traffic cost, while providing doctors more valuable gait information. In this paper, we present a piezoelectric insole gait monitoring system and its use in an IoHT architecture. Through the experimental results, the high detection sensitivity of 54 mN and responsivity of 163 mV/N are achieved, thereby satisfying the need for analyzing various diseases. Furthermore, the assembled system can continuously work for 16 hours, indicating its successful utilization when long-term gait monitoring is required. The presented work provides a feasible means for real-time, long-term, and accurate gait monitoring, prompting the development of gait analysis in the IoHT.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于健康物联网步态监测的压电柔性鞋垫系统
步态分析与慢性疾病密切相关,在医疗保健领域具有重要意义。随着健康物联网(IoHT)的发展,可以远程进行长期的步态监测和相应的分析,减少患者的时间和交通成本,同时为医生提供更有价值的步态信息。在本文中,我们提出了一个压电鞋垫步态监测系统及其在IoHT架构中的应用。通过实验结果,实现了54 mN的高检测灵敏度和163 mV/N的响应度,满足了各种疾病分析的需要。此外,组装的系统可以连续工作16小时,这表明它在需要长期步态监测时可以成功使用。本研究为实时、长期、准确的步态监测提供了可行的手段,促进了IoHT中步态分析的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Wearable Wireless Power Transfer using Direct-Write Dispenser Printed Flexible Coils Binary Neural Network as a Flexible Integrated Circuit for Odour Classification Stretchable Wireless Sensor Skin for the Surface Monitoring of Soft Objects Assessing the Stability of Printed NWs by in situ SEM Characterisation Development of a Novel and Flexible MWCNT/PDMS Based Resistive Force Sensor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1