The Neuron Navigator: Exploring the information pathway through the neural maze

Ching-Yao Lin, Kuen-Long Tsai, Sheng-Chuan Wang, C. Hsieh, Hsiu-Ming Chang, A. Chiang
{"title":"The Neuron Navigator: Exploring the information pathway through the neural maze","authors":"Ching-Yao Lin, Kuen-Long Tsai, Sheng-Chuan Wang, C. Hsieh, Hsiu-Ming Chang, A. Chiang","doi":"10.1109/PACIFICVIS.2011.5742370","DOIUrl":null,"url":null,"abstract":"Recent advances in microscopic imaging technology have enabled neuroscientists to obtain unprecedentedly clear images of neurons. To extract additional knowledge from the tangled neurons, for example, their connective relationships, is key to understanding how information is processed and transmitted within the brain. In this paper, we will introduce our recent endeavor, the Neuron Navigator (NNG), which integrates a 3D neuron image database into an easy-to-use visual interface. Via a flexible and user-friendly interface, NNG is designed to help researchers analyze and observe the connectivity within the neural maze and discover possible pathways. With NNG's 3D neuron image database, researchers can perform volumetric searches using the location of neural terminals, or the occupation of neuron volumes within the 3D brain space. Also, the presence of the neurons under a combination of spatial restrictions can be shown as well. NNG is a result of a multi-discipline collaboration between neuroscientists and computer scientists, and NNG has now been implemented on a coordinated brain space, that being, the Drosophila (fruit fly) brain. NNG is accessible through: http://211.73.64.34/NNG.","PeriodicalId":127522,"journal":{"name":"2011 IEEE Pacific Visualization Symposium","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Pacific Visualization Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACIFICVIS.2011.5742370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

Recent advances in microscopic imaging technology have enabled neuroscientists to obtain unprecedentedly clear images of neurons. To extract additional knowledge from the tangled neurons, for example, their connective relationships, is key to understanding how information is processed and transmitted within the brain. In this paper, we will introduce our recent endeavor, the Neuron Navigator (NNG), which integrates a 3D neuron image database into an easy-to-use visual interface. Via a flexible and user-friendly interface, NNG is designed to help researchers analyze and observe the connectivity within the neural maze and discover possible pathways. With NNG's 3D neuron image database, researchers can perform volumetric searches using the location of neural terminals, or the occupation of neuron volumes within the 3D brain space. Also, the presence of the neurons under a combination of spatial restrictions can be shown as well. NNG is a result of a multi-discipline collaboration between neuroscientists and computer scientists, and NNG has now been implemented on a coordinated brain space, that being, the Drosophila (fruit fly) brain. NNG is accessible through: http://211.73.64.34/NNG.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
神经元导航员:探索通过神经迷宫的信息通路
显微成像技术的最新进展使神经科学家能够获得前所未有的清晰的神经元图像。从纠缠的神经元中提取额外的知识,例如,它们的连接关系,是理解信息如何在大脑中处理和传输的关键。在本文中,我们将介绍我们最近的努力,神经元导航器(NNG),它将3D神经元图像数据库集成到一个易于使用的可视化界面中。通过灵活和用户友好的界面,NNG旨在帮助研究人员分析和观察神经迷宫内的连接并发现可能的途径。通过NNG的3D神经元图像数据库,研究人员可以使用神经终端的位置或3D大脑空间中神经元体积的占用来进行体积搜索。此外,神经元在空间限制组合下的存在也可以被显示出来。NNG是神经科学家和计算机科学家之间多学科合作的结果,NNG现在已经在一个协调的大脑空间,即果蝇(果蝇)的大脑中实施。NNG可通过http://211.73.64.34/NNG访问。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Copyright page An advanced network visualization system for financial crime detection Static correlation visualization for large time-varying volume data Keynote address: Why everyone seems to be using spring embedders for network visualization, and should not Dual space analysis of turbulent combustion particle data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1