Steven C. Nesbit, Andrew O'Brien, Jocelyn Rego, Gavin Parpart, Carlos Gonzalez, Garrett T. Kenyon, Edward Kim, T. Stewart, Y. Watkins
{"title":"Think Fast: Time Control in Varying Paradigms of Spiking Neural Networks","authors":"Steven C. Nesbit, Andrew O'Brien, Jocelyn Rego, Gavin Parpart, Carlos Gonzalez, Garrett T. Kenyon, Edward Kim, T. Stewart, Y. Watkins","doi":"10.1145/3546790.3546814","DOIUrl":null,"url":null,"abstract":"The state-of-the-art in machine learning has been achieved primarily by deep learning artificial neural networks. These networks are powerful but biologically implausible and energy intensive. In parallel, a new paradigm of neural network is being researched that can alleviate some of the computational and energy issues. These networks, spiking neural networks (SNNs), have transformative potential if the community is able to bridge the gap between deep learning and SNNs. However, SNNs are notoriously difficult to train and lack precision in their communication. In an effort to overcome these limitations and retain the benefits of the learning process in deep learning, we investigate novel ways to translate between them. We construct several network designs with varying degrees of biological plausibility. We then test our designs on an image classification task and demonstrate our designs allow for a customized tradeoff between biological plausibility, power efficiency, inference time, and accuracy.","PeriodicalId":104528,"journal":{"name":"Proceedings of the International Conference on Neuromorphic Systems 2022","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on Neuromorphic Systems 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3546790.3546814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The state-of-the-art in machine learning has been achieved primarily by deep learning artificial neural networks. These networks are powerful but biologically implausible and energy intensive. In parallel, a new paradigm of neural network is being researched that can alleviate some of the computational and energy issues. These networks, spiking neural networks (SNNs), have transformative potential if the community is able to bridge the gap between deep learning and SNNs. However, SNNs are notoriously difficult to train and lack precision in their communication. In an effort to overcome these limitations and retain the benefits of the learning process in deep learning, we investigate novel ways to translate between them. We construct several network designs with varying degrees of biological plausibility. We then test our designs on an image classification task and demonstrate our designs allow for a customized tradeoff between biological plausibility, power efficiency, inference time, and accuracy.