Kinect=IMU? Learning MIMO Signal Mappings to Automatically Translate Activity Recognition Systems across Sensor Modalities

O. Baños, Alberto Calatroni, M. Damas, H. Pomares, I. Rojas, Hesam Sagha, J. Millán, G. Tröster, Ricardo Chavarriaga, D. Roggen
{"title":"Kinect=IMU? Learning MIMO Signal Mappings to Automatically Translate Activity Recognition Systems across Sensor Modalities","authors":"O. Baños, Alberto Calatroni, M. Damas, H. Pomares, I. Rojas, Hesam Sagha, J. Millán, G. Tröster, Ricardo Chavarriaga, D. Roggen","doi":"10.1109/ISWC.2012.17","DOIUrl":null,"url":null,"abstract":"We propose a method to automatically translate a preexisting activity recognition system, devised for a source sensor domain S, so that it can operate on a newly discovered target sensor domain T, possibly of different modality. First, we use MIMO system identification techniques to obtain a function that maps the signals of S to T. This mapping is then used to translate the recognition system across the sensor domains. We demonstrate the approach in a 5-class gesture recognition problem translating between a vision-based skeleton tracking system (Kinect), and inertial measurement units (IMUs). An adequate mapping can be learned in as few as a single gesture (3 seconds) in this scenario. The accuracy after Kinect → IMU or IMU → Kinect translation is 4% below the baseline for the same limb. Translating across modalities and also to an adjacent limb yields an accuracy 8% below baseline. We discuss the sources of errors and means for improvement. The approach is independent of the sensor modalities. It supports multimodal activity recognition and more flexible real-world activity recognition system deployments.","PeriodicalId":190627,"journal":{"name":"2012 16th International Symposium on Wearable Computers","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 16th International Symposium on Wearable Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISWC.2012.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

Abstract

We propose a method to automatically translate a preexisting activity recognition system, devised for a source sensor domain S, so that it can operate on a newly discovered target sensor domain T, possibly of different modality. First, we use MIMO system identification techniques to obtain a function that maps the signals of S to T. This mapping is then used to translate the recognition system across the sensor domains. We demonstrate the approach in a 5-class gesture recognition problem translating between a vision-based skeleton tracking system (Kinect), and inertial measurement units (IMUs). An adequate mapping can be learned in as few as a single gesture (3 seconds) in this scenario. The accuracy after Kinect → IMU or IMU → Kinect translation is 4% below the baseline for the same limb. Translating across modalities and also to an adjacent limb yields an accuracy 8% below baseline. We discuss the sources of errors and means for improvement. The approach is independent of the sensor modalities. It supports multimodal activity recognition and more flexible real-world activity recognition system deployments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Kinect = IMU ?学习MIMO信号映射自动转换跨传感器模态的活动识别系统
我们提出了一种方法来自动转换预先存在的活动识别系统,为源传感器域S设计,使其能够在新发现的目标传感器域T上运行,可能是不同的模态。首先,我们使用MIMO系统识别技术获得一个将S信号映射到t的函数,然后使用该映射在传感器域上翻译识别系统。我们在一个基于视觉的骨骼跟踪系统(Kinect)和惯性测量单元(imu)之间转换的5类手势识别问题中演示了该方法。在这种情况下,只需一个手势(3秒)就可以学会适当的映射。Kinect→IMU或IMU→Kinect转换后的精度比同一肢体的基线低4%。跨模式转换和邻肢转换的准确率比基线低8%。我们讨论了误差的来源和改进的方法。该方法与传感器模态无关。它支持多模态活动识别和更灵活的现实世界活动识别系统部署。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tongue Mounted Interface for Digitally Actuating the Sense of Taste Energy-Efficient Continuous Activity Recognition on Mobile Phones: An Activity-Adaptive Approach Recognizing Daily Life Context Using Web-Collected Audio Data Toe Input Using a Mobile Projector and Kinect Sensor Energy-Efficient Activity Recognition Using Prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1