M. Kumar, Yogesh Pratap, Mridula Gupta, S. Haldar, R. Gupta
{"title":"DMG insulated shallow extension cylindrical GAA Schottky Barrier MOSFET for removal of ambipolarity: A novel approach","authors":"M. Kumar, Yogesh Pratap, Mridula Gupta, S. Haldar, R. Gupta","doi":"10.1109/INEC.2016.7589309","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel Dual Metal Gate (DMG) Insulated Shallow Extension (ISE) Cylindrical Gate All Around (CGAA) Schottky Barrier (SB) MOSFET to eliminate the ambipolar behaviour of SB-CGAA MOSFET by blocking the metal induced gap states as well as unwanted charge sharing between source/channel and drain/channel regions. The Ion/Ioff ratio of DMG-ISE-CGAA-SB MOSFET increases by 362 times offering steeper subthreshold slope (67.59 mV/decade) and improved cut-off frequency makes it attractive candidate for CMOS digital circuit design.","PeriodicalId":416565,"journal":{"name":"2016 IEEE International Nanoelectronics Conference (INEC)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Nanoelectronics Conference (INEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INEC.2016.7589309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes a novel Dual Metal Gate (DMG) Insulated Shallow Extension (ISE) Cylindrical Gate All Around (CGAA) Schottky Barrier (SB) MOSFET to eliminate the ambipolar behaviour of SB-CGAA MOSFET by blocking the metal induced gap states as well as unwanted charge sharing between source/channel and drain/channel regions. The Ion/Ioff ratio of DMG-ISE-CGAA-SB MOSFET increases by 362 times offering steeper subthreshold slope (67.59 mV/decade) and improved cut-off frequency makes it attractive candidate for CMOS digital circuit design.